From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 15:03:27 +0800 Subject: [PATCH] up new v4 --- lib/detecter_tools/darknet/shortcut_layer.c | 591 +++++++++++++++++++++++++++++----------------------------- 1 files changed, 293 insertions(+), 298 deletions(-) diff --git a/lib/detecter_tools/darknet/shortcut_layer.c b/lib/detecter_tools/darknet/shortcut_layer.c index 9559683..87f0d7e 100644 --- a/lib/detecter_tools/darknet/shortcut_layer.c +++ b/lib/detecter_tools/darknet/shortcut_layer.c @@ -1,298 +1,293 @@ -#include "shortcut_layer.h" -#include "convolutional_layer.h" -#include "dark_cuda.h" -#include "blas.h" -#include "utils.h" -#include "gemm.h" -#include <stdio.h> -#include <assert.h> - -layer make_shortcut_layer(int batch, int n, int *input_layers, int* input_sizes, int w, int h, int c, - float **layers_output, float **layers_delta, float **layers_output_gpu, float **layers_delta_gpu, WEIGHTS_TYPE_T weights_type, WEIGHTS_NORMALIZATION_T weights_normalization, - ACTIVATION activation, int train) -{ - fprintf(stderr, "Shortcut Layer: "); - int i; - for(i = 0; i < n; ++i) fprintf(stderr, "%d, ", input_layers[i]); - - layer l = { (LAYER_TYPE)0 }; - l.train = train; - l.type = SHORTCUT; - l.batch = batch; - l.activation = activation; - l.n = n; - l.input_layers = input_layers; - l.input_sizes = input_sizes; - l.layers_output = layers_output; - l.layers_delta = layers_delta; - l.weights_type = weights_type; - l.weights_normalization = weights_normalization; - l.learning_rate_scale = 1; // not necessary - - //l.w = w2; - //l.h = h2; - //l.c = c2; - l.w = l.out_w = w; - l.h = l.out_h = h; - l.c = l.out_c = c; - l.outputs = w*h*c; - l.inputs = l.outputs; - - //if(w != w2 || h != h2 || c != c2) fprintf(stderr, " w = %d, w2 = %d, h = %d, h2 = %d, c = %d, c2 = %d \n", w, w2, h, h2, c, c2); - - l.index = l.input_layers[0]; - - - if (train) l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float)); - l.output = (float*)xcalloc(l.outputs * batch, sizeof(float)); - - l.nweights = 0; - if (l.weights_type == PER_FEATURE) l.nweights = (l.n + 1); - else if (l.weights_type == PER_CHANNEL) l.nweights = (l.n + 1) * l.c; - - if (l.nweights > 0) { - l.weights = (float*)calloc(l.nweights, sizeof(float)); - float scale = sqrt(2. / l.nweights); - for (i = 0; i < l.nweights; ++i) l.weights[i] = 1;// +0.01*rand_uniform(-1, 1);// scale*rand_uniform(-1, 1); // rand_normal(); - - if (train) l.weight_updates = (float*)calloc(l.nweights, sizeof(float)); - l.update = update_shortcut_layer; - } - - l.forward = forward_shortcut_layer; - l.backward = backward_shortcut_layer; -#ifndef GPU - if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(l.batch*l.outputs, sizeof(float)); -#endif // GPU - -#ifdef GPU - if (l.activation == SWISH || l.activation == MISH) l.activation_input_gpu = cuda_make_array(l.activation_input, l.batch*l.outputs); - - l.forward_gpu = forward_shortcut_layer_gpu; - l.backward_gpu = backward_shortcut_layer_gpu; - - if (l.nweights > 0) { - l.update_gpu = update_shortcut_layer_gpu; - l.weights_gpu = cuda_make_array(l.weights, l.nweights); - if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights); - } - - if (train) l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); - l.output_gpu = cuda_make_array(l.output, l.outputs*batch); - - l.input_sizes_gpu = cuda_make_int_array_new_api(input_sizes, l.n); - l.layers_output_gpu = (float**)cuda_make_array_pointers((void**)layers_output_gpu, l.n); - l.layers_delta_gpu = (float**)cuda_make_array_pointers((void**)layers_delta_gpu, l.n); -#endif // GPU - - l.bflops = l.out_w * l.out_h * l.out_c * l.n / 1000000000.; - if (l.weights_type) l.bflops *= 2; - fprintf(stderr, " wt = %d, wn = %d, outputs:%4d x%4d x%4d %5.3f BF\n", l.weights_type, l.weights_normalization, l.out_w, l.out_h, l.out_c, l.bflops); - return l; -} - -void resize_shortcut_layer(layer *l, int w, int h, network *net) -{ - //assert(l->w == l->out_w); - //assert(l->h == l->out_h); - l->w = l->out_w = w; - l->h = l->out_h = h; - l->outputs = w*h*l->out_c; - l->inputs = l->outputs; - if (l->train) l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); - l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); - - int i; - for (i = 0; i < l->n; ++i) { - int index = l->input_layers[i]; - l->input_sizes[i] = net->layers[index].outputs; - l->layers_output[i] = net->layers[index].output; - l->layers_delta[i] = net->layers[index].delta; - - assert(l->w == net->layers[index].out_w && l->h == net->layers[index].out_h); - } - - if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, l->batch*l->outputs * sizeof(float)); - -#ifdef GPU - cuda_free(l->output_gpu); - l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); - - if (l->train) { - cuda_free(l->delta_gpu); - l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); - } - - float **layers_output_gpu = (float **)calloc(l->n, sizeof(float *)); - float **layers_delta_gpu = (float **)calloc(l->n, sizeof(float *)); - - for (i = 0; i < l->n; ++i) { - const int index = l->input_layers[i]; - layers_output_gpu[i] = net->layers[index].output_gpu; - layers_delta_gpu[i] = net->layers[index].delta_gpu; - } - - memcpy_ongpu(l->input_sizes_gpu, l->input_sizes, l->n * sizeof(int)); - memcpy_ongpu(l->layers_output_gpu, layers_output_gpu, l->n * sizeof(float*)); - memcpy_ongpu(l->layers_delta_gpu, layers_delta_gpu, l->n * sizeof(float*)); - - free(layers_output_gpu); - free(layers_delta_gpu); - - if (l->activation == SWISH || l->activation == MISH) { - cuda_free(l->activation_input_gpu); - l->activation_input_gpu = cuda_make_array(l->activation_input, l->batch*l->outputs); - } -#endif - -} - -void forward_shortcut_layer(const layer l, network_state state) -{ - int from_w = state.net.layers[l.index].w; - int from_h = state.net.layers[l.index].h; - int from_c = state.net.layers[l.index].c; - - if (l.nweights == 0 && l.n == 1 && from_w == l.w && from_h == l.h && from_c == l.c) { - int size = l.batch * l.w * l.h * l.c; - int i; - #pragma omp parallel for - for(i = 0; i < size; ++i) - l.output[i] = state.input[i] + state.net.layers[l.index].output[i]; - } - else { - shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, l.layers_output, l.output, state.input, l.weights, l.nweights, l.weights_normalization); - } - - //copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); - //shortcut_cpu(l.batch, from_w, from_h, from_c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output); - - //activate_array(l.output, l.outputs*l.batch, l.activation); - if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output); - else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); - else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation); -} - -void backward_shortcut_layer(const layer l, network_state state) -{ - if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta); - else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta); - else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); - - backward_shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, - l.layers_delta, state.delta, l.delta, l.weights, l.weight_updates, l.nweights, state.input, l.layers_output, l.weights_normalization); - - //axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1); - //shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta); -} - -void update_shortcut_layer(layer l, int batch, float learning_rate_init, float momentum, float decay) -{ - if (l.nweights > 0) { - float learning_rate = learning_rate_init*l.learning_rate_scale; - //float momentum = a.momentum; - //float decay = a.decay; - //int batch = a.batch; - - axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1); - axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1); - scal_cpu(l.nweights, momentum, l.weight_updates, 1); - } -} - -#ifdef GPU -void forward_shortcut_layer_gpu(const layer l, network_state state) -{ - //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); - //simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu); - //shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); - - //input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); - - //----------- - //if (l.outputs == l.input_sizes[0]) - //if(l.n == 1 && l.nweights == 0) - //{ - // input_shortcut_gpu(state.input, l.batch, state.net.layers[l.index].w, state.net.layers[l.index].h, state.net.layers[l.index].c, - // state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); - //} - //else - { - shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_output_gpu, l.output_gpu, state.input, l.weights_gpu, l.nweights, l.weights_normalization); - } - - if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); - else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); - else activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); - -} - -void backward_shortcut_layer_gpu(const layer l, network_state state) -{ - if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); - else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); - else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); - - backward_shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_delta_gpu, state.delta, l.delta_gpu, - l.weights_gpu, l.weight_updates_gpu, l.nweights, state.input, l.layers_output_gpu, l.weights_normalization); - - //axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1); - //shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu); -} - -void update_shortcut_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale) -{ - if (l.nweights > 0) { - float learning_rate = learning_rate_init*l.learning_rate_scale; - //float momentum = a.momentum; - //float decay = a.decay; - //int batch = a.batch; - - // Loss scale for Mixed-Precision on Tensor-Cores - if (loss_scale != 1.0) { - if(l.weight_updates_gpu && l.nweights > 0) scal_ongpu(l.nweights, 1.0 / loss_scale, l.weight_updates_gpu, 1); - } - - reset_nan_and_inf(l.weight_updates_gpu, l.nweights); - fix_nan_and_inf(l.weights_gpu, l.nweights); - - //constrain_weight_updates_ongpu(l.nweights, 1, l.weights_gpu, l.weight_updates_gpu); - constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1); - - /* - cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); - cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); - CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream())); - for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weight_updates[i]); - printf(" l.nweights = %d - updates \n", l.nweights); - for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weights[i]); - printf(" l.nweights = %d \n\n", l.nweights); - */ - - //axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); - axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); - scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1); - - //fill_ongpu(l.nweights, 0, l.weight_updates_gpu, 1); - - //if (l.clip) { - // constrain_ongpu(l.nweights, l.clip, l.weights_gpu, 1); - //} - } -} - -void pull_shortcut_layer(layer l) -{ - constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1); - cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); - cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); - CHECK_CUDA(cudaPeekAtLastError()); - CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream())); -} - -void push_shortcut_layer(layer l) -{ - cuda_push_array(l.weights_gpu, l.weights, l.nweights); - CHECK_CUDA(cudaPeekAtLastError()); -} -#endif +#include "shortcut_layer.h" +#include "convolutional_layer.h" +#include "dark_cuda.h" +#include "blas.h" +#include "utils.h" +#include "gemm.h" +#include <stdio.h> +#include <assert.h> + +layer make_shortcut_layer(int batch, int n, int *input_layers, int* input_sizes, int w, int h, int c, + float **layers_output, float **layers_delta, float **layers_output_gpu, float **layers_delta_gpu, WEIGHTS_TYPE_T weights_type, WEIGHTS_NORMALIZATION_T weights_normalization, + ACTIVATION activation, int train) +{ + fprintf(stderr, "Shortcut Layer: "); + int i; + for(i = 0; i < n; ++i) fprintf(stderr, "%d, ", input_layers[i]); + + layer l = { (LAYER_TYPE)0 }; + l.train = train; + l.type = SHORTCUT; + l.batch = batch; + l.activation = activation; + l.n = n; + l.input_layers = input_layers; + l.input_sizes = input_sizes; + l.layers_output = layers_output; + l.layers_delta = layers_delta; + l.weights_type = weights_type; + l.weights_normalization = weights_normalization; + l.learning_rate_scale = 1; // not necessary + + //l.w = w2; + //l.h = h2; + //l.c = c2; + l.w = l.out_w = w; + l.h = l.out_h = h; + l.c = l.out_c = c; + l.outputs = w*h*c; + l.inputs = l.outputs; + + //if(w != w2 || h != h2 || c != c2) fprintf(stderr, " w = %d, w2 = %d, h = %d, h2 = %d, c = %d, c2 = %d \n", w, w2, h, h2, c, c2); + + l.index = l.input_layers[0]; + + + if (train) l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float)); + l.output = (float*)xcalloc(l.outputs * batch, sizeof(float)); + + l.nweights = 0; + if (l.weights_type == PER_FEATURE) l.nweights = (l.n + 1); + else if (l.weights_type == PER_CHANNEL) l.nweights = (l.n + 1) * l.c; + + if (l.nweights > 0) { + l.weights = (float*)calloc(l.nweights, sizeof(float)); + float scale = sqrt(2. / l.nweights); + for (i = 0; i < l.nweights; ++i) l.weights[i] = 1;// +0.01*rand_uniform(-1, 1);// scale*rand_uniform(-1, 1); // rand_normal(); + + if (train) l.weight_updates = (float*)calloc(l.nweights, sizeof(float)); + l.update = update_shortcut_layer; + } + + l.forward = forward_shortcut_layer; + l.backward = backward_shortcut_layer; +#ifndef GPU + if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(l.batch*l.outputs, sizeof(float)); +#endif // GPU + +#ifdef GPU + if (l.activation == SWISH || l.activation == MISH) l.activation_input_gpu = cuda_make_array(l.activation_input, l.batch*l.outputs); + + l.forward_gpu = forward_shortcut_layer_gpu; + l.backward_gpu = backward_shortcut_layer_gpu; + + if (l.nweights > 0) { + l.update_gpu = update_shortcut_layer_gpu; + l.weights_gpu = cuda_make_array(l.weights, l.nweights); + if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights); + } + + if (train) l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); + l.output_gpu = cuda_make_array(l.output, l.outputs*batch); + + l.input_sizes_gpu = cuda_make_int_array_new_api(input_sizes, l.n); + l.layers_output_gpu = (float**)cuda_make_array_pointers((void**)layers_output_gpu, l.n); + l.layers_delta_gpu = (float**)cuda_make_array_pointers((void**)layers_delta_gpu, l.n); +#endif // GPU + + l.bflops = l.out_w * l.out_h * l.out_c * l.n / 1000000000.; + if (l.weights_type) l.bflops *= 2; + fprintf(stderr, " wt = %d, wn = %d, outputs:%4d x%4d x%4d %5.3f BF\n", l.weights_type, l.weights_normalization, l.out_w, l.out_h, l.out_c, l.bflops); + return l; +} + +void resize_shortcut_layer(layer *l, int w, int h, network *net) +{ + //assert(l->w == l->out_w); + //assert(l->h == l->out_h); + l->w = l->out_w = w; + l->h = l->out_h = h; + l->outputs = w*h*l->out_c; + l->inputs = l->outputs; + if (l->train) l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); + l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); + + int i; + for (i = 0; i < l->n; ++i) { + int index = l->input_layers[i]; + l->input_sizes[i] = net->layers[index].outputs; + l->layers_output[i] = net->layers[index].output; + l->layers_delta[i] = net->layers[index].delta; + + assert(l->w == net->layers[index].out_w && l->h == net->layers[index].out_h); + } + + if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, l->batch*l->outputs * sizeof(float)); + +#ifdef GPU + cuda_free(l->output_gpu); + l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); + + if (l->train) { + cuda_free(l->delta_gpu); + l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); + } + + float **layers_output_gpu = (float **)calloc(l->n, sizeof(float *)); + float **layers_delta_gpu = (float **)calloc(l->n, sizeof(float *)); + + for (i = 0; i < l->n; ++i) { + const int index = l->input_layers[i]; + layers_output_gpu[i] = net->layers[index].output_gpu; + layers_delta_gpu[i] = net->layers[index].delta_gpu; + } + + memcpy_ongpu(l->input_sizes_gpu, l->input_sizes, l->n * sizeof(int)); + memcpy_ongpu(l->layers_output_gpu, layers_output_gpu, l->n * sizeof(float*)); + memcpy_ongpu(l->layers_delta_gpu, layers_delta_gpu, l->n * sizeof(float*)); + + free(layers_output_gpu); + free(layers_delta_gpu); + + if (l->activation == SWISH || l->activation == MISH) { + cuda_free(l->activation_input_gpu); + l->activation_input_gpu = cuda_make_array(l->activation_input, l->batch*l->outputs); + } +#endif + +} + +void forward_shortcut_layer(const layer l, network_state state) +{ + int from_w = state.net.layers[l.index].w; + int from_h = state.net.layers[l.index].h; + int from_c = state.net.layers[l.index].c; + + if (l.nweights == 0 && l.n == 1 && from_w == l.w && from_h == l.h && from_c == l.c) { + int size = l.batch * l.w * l.h * l.c; + int i; + #pragma omp parallel for + for(i = 0; i < size; ++i) + l.output[i] = state.input[i] + state.net.layers[l.index].output[i]; + } + else { + shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, l.layers_output, l.output, state.input, l.weights, l.nweights, l.weights_normalization); + } + + //copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); + //shortcut_cpu(l.batch, from_w, from_h, from_c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output); + + //activate_array(l.output, l.outputs*l.batch, l.activation); + if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation); +} + +void backward_shortcut_layer(const layer l, network_state state) +{ + if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta); + else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta); + else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); + + backward_shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, + l.layers_delta, state.delta, l.delta, l.weights, l.weight_updates, l.nweights, state.input, l.layers_output, l.weights_normalization); + + //axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1); + //shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta); +} + +void update_shortcut_layer(layer l, int batch, float learning_rate_init, float momentum, float decay) +{ + if (l.nweights > 0) { + float learning_rate = learning_rate_init*l.learning_rate_scale; + //float momentum = a.momentum; + //float decay = a.decay; + //int batch = a.batch; + + axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1); + axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1); + scal_cpu(l.nweights, momentum, l.weight_updates, 1); + } +} + +#ifdef GPU +void forward_shortcut_layer_gpu(const layer l, network_state state) +{ + //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); + //simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu); + //shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); + + //input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); + + //----------- + //if (l.outputs == l.input_sizes[0]) + //if(l.n == 1 && l.nweights == 0) + //{ + // input_shortcut_gpu(state.input, l.batch, state.net.layers[l.index].w, state.net.layers[l.index].h, state.net.layers[l.index].c, + // state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); + //} + //else + { + shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_output_gpu, l.output_gpu, state.input, l.weights_gpu, l.nweights, l.weights_normalization); + } + + if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); + else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu); + else activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); + +} + +void backward_shortcut_layer_gpu(const layer l, network_state state) +{ + if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); + else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu); + else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); + + backward_shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_delta_gpu, state.delta, l.delta_gpu, + l.weights_gpu, l.weight_updates_gpu, l.nweights, state.input, l.layers_output_gpu, l.weights_normalization); + + //axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1); + //shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu); +} + +void update_shortcut_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale) +{ + if (l.nweights > 0) { + float learning_rate = learning_rate_init*l.learning_rate_scale / loss_scale; + //float momentum = a.momentum; + //float decay = a.decay; + //int batch = a.batch; + + reset_nan_and_inf(l.weight_updates_gpu, l.nweights); + fix_nan_and_inf(l.weights_gpu, l.nweights); + + //constrain_weight_updates_ongpu(l.nweights, 1, l.weights_gpu, l.weight_updates_gpu); + constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1); + + /* + cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); + cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); + CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream())); + for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weight_updates[i]); + printf(" l.nweights = %d - updates \n", l.nweights); + for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weights[i]); + printf(" l.nweights = %d \n\n", l.nweights); + */ + + //axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1); + axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1); + scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1); + + //fill_ongpu(l.nweights, 0, l.weight_updates_gpu, 1); + + //if (l.clip) { + // constrain_ongpu(l.nweights, l.clip, l.weights_gpu, 1); + //} + } +} + +void pull_shortcut_layer(layer l) +{ + constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1); + cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights); + cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights); + CHECK_CUDA(cudaPeekAtLastError()); + CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream())); +} + +void push_shortcut_layer(layer l) +{ + cuda_push_array(l.weights_gpu, l.weights, l.nweights); + CHECK_CUDA(cudaPeekAtLastError()); +} +#endif -- Gitblit v1.8.0