From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/shortcut_layer.c |  591 +++++++++++++++++++++++++++++-----------------------------
 1 files changed, 293 insertions(+), 298 deletions(-)

diff --git a/lib/detecter_tools/darknet/shortcut_layer.c b/lib/detecter_tools/darknet/shortcut_layer.c
index 9559683..87f0d7e 100644
--- a/lib/detecter_tools/darknet/shortcut_layer.c
+++ b/lib/detecter_tools/darknet/shortcut_layer.c
@@ -1,298 +1,293 @@
-#include "shortcut_layer.h"
-#include "convolutional_layer.h"
-#include "dark_cuda.h"
-#include "blas.h"
-#include "utils.h"
-#include "gemm.h"
-#include <stdio.h>
-#include <assert.h>
-
-layer make_shortcut_layer(int batch, int n, int *input_layers, int* input_sizes, int w, int h, int c,
-    float **layers_output, float **layers_delta, float **layers_output_gpu, float **layers_delta_gpu, WEIGHTS_TYPE_T weights_type, WEIGHTS_NORMALIZATION_T weights_normalization,
-    ACTIVATION activation, int train)
-{
-    fprintf(stderr, "Shortcut Layer: ");
-    int i;
-    for(i = 0; i < n; ++i) fprintf(stderr, "%d, ", input_layers[i]);
-
-    layer l = { (LAYER_TYPE)0 };
-    l.train = train;
-    l.type = SHORTCUT;
-    l.batch = batch;
-    l.activation = activation;
-    l.n = n;
-    l.input_layers = input_layers;
-    l.input_sizes = input_sizes;
-    l.layers_output = layers_output;
-    l.layers_delta = layers_delta;
-    l.weights_type = weights_type;
-    l.weights_normalization = weights_normalization;
-    l.learning_rate_scale = 1;  // not necessary
-
-    //l.w = w2;
-    //l.h = h2;
-    //l.c = c2;
-    l.w = l.out_w = w;
-    l.h = l.out_h = h;
-    l.c = l.out_c = c;
-    l.outputs = w*h*c;
-    l.inputs = l.outputs;
-
-    //if(w != w2 || h != h2 || c != c2) fprintf(stderr, " w = %d, w2 = %d, h = %d, h2 = %d, c = %d, c2 = %d \n", w, w2, h, h2, c, c2);
-
-    l.index = l.input_layers[0];
-
-
-    if (train) l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float));
-    l.output = (float*)xcalloc(l.outputs * batch, sizeof(float));
-
-    l.nweights = 0;
-    if (l.weights_type == PER_FEATURE) l.nweights = (l.n + 1);
-    else if (l.weights_type == PER_CHANNEL) l.nweights = (l.n + 1) * l.c;
-
-    if (l.nweights > 0) {
-        l.weights = (float*)calloc(l.nweights, sizeof(float));
-        float scale = sqrt(2. / l.nweights);
-        for (i = 0; i < l.nweights; ++i) l.weights[i] = 1;// +0.01*rand_uniform(-1, 1);// scale*rand_uniform(-1, 1);   // rand_normal();
-
-        if (train) l.weight_updates = (float*)calloc(l.nweights, sizeof(float));
-        l.update = update_shortcut_layer;
-    }
-
-    l.forward = forward_shortcut_layer;
-    l.backward = backward_shortcut_layer;
-#ifndef GPU
-    if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(l.batch*l.outputs, sizeof(float));
-#endif // GPU
-
-#ifdef GPU
-    if (l.activation == SWISH || l.activation == MISH) l.activation_input_gpu = cuda_make_array(l.activation_input, l.batch*l.outputs);
-
-    l.forward_gpu = forward_shortcut_layer_gpu;
-    l.backward_gpu = backward_shortcut_layer_gpu;
-
-    if (l.nweights > 0) {
-        l.update_gpu = update_shortcut_layer_gpu;
-        l.weights_gpu = cuda_make_array(l.weights, l.nweights);
-        if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);
-    }
-
-    if (train) l.delta_gpu =  cuda_make_array(l.delta, l.outputs*batch);
-    l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
-
-    l.input_sizes_gpu = cuda_make_int_array_new_api(input_sizes, l.n);
-    l.layers_output_gpu = (float**)cuda_make_array_pointers((void**)layers_output_gpu, l.n);
-    l.layers_delta_gpu = (float**)cuda_make_array_pointers((void**)layers_delta_gpu, l.n);
-#endif  // GPU
-
-    l.bflops = l.out_w * l.out_h * l.out_c * l.n / 1000000000.;
-    if (l.weights_type) l.bflops *= 2;
-    fprintf(stderr, " wt = %d, wn = %d, outputs:%4d x%4d x%4d %5.3f BF\n", l.weights_type, l.weights_normalization, l.out_w, l.out_h, l.out_c, l.bflops);
-    return l;
-}
-
-void resize_shortcut_layer(layer *l, int w, int h, network *net)
-{
-    //assert(l->w == l->out_w);
-    //assert(l->h == l->out_h);
-    l->w = l->out_w = w;
-    l->h = l->out_h = h;
-    l->outputs = w*h*l->out_c;
-    l->inputs = l->outputs;
-    if (l->train) l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float));
-    l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float));
-
-    int i;
-    for (i = 0; i < l->n; ++i) {
-        int index = l->input_layers[i];
-        l->input_sizes[i] = net->layers[index].outputs;
-        l->layers_output[i] = net->layers[index].output;
-        l->layers_delta[i] = net->layers[index].delta;
-
-        assert(l->w == net->layers[index].out_w && l->h == net->layers[index].out_h);
-    }
-
-    if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, l->batch*l->outputs * sizeof(float));
-
-#ifdef GPU
-    cuda_free(l->output_gpu);
-    l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
-
-    if (l->train) {
-        cuda_free(l->delta_gpu);
-        l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
-    }
-
-    float **layers_output_gpu = (float **)calloc(l->n, sizeof(float *));
-    float **layers_delta_gpu = (float **)calloc(l->n, sizeof(float *));
-
-    for (i = 0; i < l->n; ++i) {
-        const int index = l->input_layers[i];
-        layers_output_gpu[i] = net->layers[index].output_gpu;
-        layers_delta_gpu[i] = net->layers[index].delta_gpu;
-    }
-
-    memcpy_ongpu(l->input_sizes_gpu, l->input_sizes, l->n * sizeof(int));
-    memcpy_ongpu(l->layers_output_gpu, layers_output_gpu, l->n * sizeof(float*));
-    memcpy_ongpu(l->layers_delta_gpu, layers_delta_gpu, l->n * sizeof(float*));
-
-    free(layers_output_gpu);
-    free(layers_delta_gpu);
-
-    if (l->activation == SWISH || l->activation == MISH) {
-        cuda_free(l->activation_input_gpu);
-        l->activation_input_gpu = cuda_make_array(l->activation_input, l->batch*l->outputs);
-    }
-#endif
-
-}
-
-void forward_shortcut_layer(const layer l, network_state state)
-{
-    int from_w = state.net.layers[l.index].w;
-    int from_h = state.net.layers[l.index].h;
-    int from_c = state.net.layers[l.index].c;
-
-    if (l.nweights == 0 && l.n == 1 && from_w == l.w && from_h == l.h && from_c == l.c) {
-        int size = l.batch * l.w * l.h * l.c;
-        int i;
-        #pragma omp parallel for
-        for(i = 0; i < size; ++i)
-            l.output[i] = state.input[i] + state.net.layers[l.index].output[i];
-    }
-    else {
-        shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, l.layers_output, l.output, state.input, l.weights, l.nweights, l.weights_normalization);
-    }
-
-    //copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
-    //shortcut_cpu(l.batch, from_w, from_h, from_c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output);
-
-    //activate_array(l.output, l.outputs*l.batch, l.activation);
-    if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output);
-    else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output);
-    else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation);
-}
-
-void backward_shortcut_layer(const layer l, network_state state)
-{
-    if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta);
-    else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta);
-    else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
-
-    backward_shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes,
-        l.layers_delta, state.delta, l.delta, l.weights, l.weight_updates, l.nweights, state.input, l.layers_output, l.weights_normalization);
-
-    //axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1);
-    //shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta);
-}
-
-void update_shortcut_layer(layer l, int batch, float learning_rate_init, float momentum, float decay)
-{
-    if (l.nweights > 0) {
-        float learning_rate = learning_rate_init*l.learning_rate_scale;
-        //float momentum = a.momentum;
-        //float decay = a.decay;
-        //int batch = a.batch;
-
-        axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1);
-        axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1);
-        scal_cpu(l.nweights, momentum, l.weight_updates, 1);
-    }
-}
-
-#ifdef GPU
-void forward_shortcut_layer_gpu(const layer l, network_state state)
-{
-    //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
-    //simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
-    //shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
-
-    //input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
-
-    //-----------
-    //if (l.outputs == l.input_sizes[0])
-    //if(l.n == 1 && l.nweights == 0)
-    //{
-    //    input_shortcut_gpu(state.input, l.batch, state.net.layers[l.index].w, state.net.layers[l.index].h, state.net.layers[l.index].c,
-    //        state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
-    //}
-    //else
-    {
-        shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_output_gpu, l.output_gpu, state.input, l.weights_gpu, l.nweights, l.weights_normalization);
-    }
-
-    if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
-    else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
-    else activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
-
-}
-
-void backward_shortcut_layer_gpu(const layer l, network_state state)
-{
-    if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu);
-    else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu);
-    else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
-
-    backward_shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_delta_gpu, state.delta, l.delta_gpu,
-        l.weights_gpu, l.weight_updates_gpu, l.nweights, state.input, l.layers_output_gpu, l.weights_normalization);
-
-    //axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1);
-    //shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu);
-}
-
-void update_shortcut_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
-{
-    if (l.nweights > 0) {
-        float learning_rate = learning_rate_init*l.learning_rate_scale;
-        //float momentum = a.momentum;
-        //float decay = a.decay;
-        //int batch = a.batch;
-
-        // Loss scale for Mixed-Precision on Tensor-Cores
-        if (loss_scale != 1.0) {
-            if(l.weight_updates_gpu && l.nweights > 0) scal_ongpu(l.nweights, 1.0 / loss_scale, l.weight_updates_gpu, 1);
-        }
-
-        reset_nan_and_inf(l.weight_updates_gpu, l.nweights);
-        fix_nan_and_inf(l.weights_gpu, l.nweights);
-
-        //constrain_weight_updates_ongpu(l.nweights, 1, l.weights_gpu, l.weight_updates_gpu);
-        constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1);
-
-        /*
-        cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights);
-        cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights);
-        CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream()));
-        for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weight_updates[i]);
-        printf(" l.nweights = %d - updates \n", l.nweights);
-        for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weights[i]);
-        printf(" l.nweights = %d \n\n", l.nweights);
-        */
-
-        //axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
-        axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
-        scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1);
-
-        //fill_ongpu(l.nweights, 0, l.weight_updates_gpu, 1);
-
-        //if (l.clip) {
-        //    constrain_ongpu(l.nweights, l.clip, l.weights_gpu, 1);
-        //}
-    }
-}
-
-void pull_shortcut_layer(layer l)
-{
-    constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1);
-    cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights);
-    cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights);
-    CHECK_CUDA(cudaPeekAtLastError());
-    CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream()));
-}
-
-void push_shortcut_layer(layer l)
-{
-    cuda_push_array(l.weights_gpu, l.weights, l.nweights);
-    CHECK_CUDA(cudaPeekAtLastError());
-}
-#endif
+#include "shortcut_layer.h"
+#include "convolutional_layer.h"
+#include "dark_cuda.h"
+#include "blas.h"
+#include "utils.h"
+#include "gemm.h"
+#include <stdio.h>
+#include <assert.h>
+
+layer make_shortcut_layer(int batch, int n, int *input_layers, int* input_sizes, int w, int h, int c,
+    float **layers_output, float **layers_delta, float **layers_output_gpu, float **layers_delta_gpu, WEIGHTS_TYPE_T weights_type, WEIGHTS_NORMALIZATION_T weights_normalization,
+    ACTIVATION activation, int train)
+{
+    fprintf(stderr, "Shortcut Layer: ");
+    int i;
+    for(i = 0; i < n; ++i) fprintf(stderr, "%d, ", input_layers[i]);
+
+    layer l = { (LAYER_TYPE)0 };
+    l.train = train;
+    l.type = SHORTCUT;
+    l.batch = batch;
+    l.activation = activation;
+    l.n = n;
+    l.input_layers = input_layers;
+    l.input_sizes = input_sizes;
+    l.layers_output = layers_output;
+    l.layers_delta = layers_delta;
+    l.weights_type = weights_type;
+    l.weights_normalization = weights_normalization;
+    l.learning_rate_scale = 1;  // not necessary
+
+    //l.w = w2;
+    //l.h = h2;
+    //l.c = c2;
+    l.w = l.out_w = w;
+    l.h = l.out_h = h;
+    l.c = l.out_c = c;
+    l.outputs = w*h*c;
+    l.inputs = l.outputs;
+
+    //if(w != w2 || h != h2 || c != c2) fprintf(stderr, " w = %d, w2 = %d, h = %d, h2 = %d, c = %d, c2 = %d \n", w, w2, h, h2, c, c2);
+
+    l.index = l.input_layers[0];
+
+
+    if (train) l.delta = (float*)xcalloc(l.outputs * batch, sizeof(float));
+    l.output = (float*)xcalloc(l.outputs * batch, sizeof(float));
+
+    l.nweights = 0;
+    if (l.weights_type == PER_FEATURE) l.nweights = (l.n + 1);
+    else if (l.weights_type == PER_CHANNEL) l.nweights = (l.n + 1) * l.c;
+
+    if (l.nweights > 0) {
+        l.weights = (float*)calloc(l.nweights, sizeof(float));
+        float scale = sqrt(2. / l.nweights);
+        for (i = 0; i < l.nweights; ++i) l.weights[i] = 1;// +0.01*rand_uniform(-1, 1);// scale*rand_uniform(-1, 1);   // rand_normal();
+
+        if (train) l.weight_updates = (float*)calloc(l.nweights, sizeof(float));
+        l.update = update_shortcut_layer;
+    }
+
+    l.forward = forward_shortcut_layer;
+    l.backward = backward_shortcut_layer;
+#ifndef GPU
+    if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(l.batch*l.outputs, sizeof(float));
+#endif // GPU
+
+#ifdef GPU
+    if (l.activation == SWISH || l.activation == MISH) l.activation_input_gpu = cuda_make_array(l.activation_input, l.batch*l.outputs);
+
+    l.forward_gpu = forward_shortcut_layer_gpu;
+    l.backward_gpu = backward_shortcut_layer_gpu;
+
+    if (l.nweights > 0) {
+        l.update_gpu = update_shortcut_layer_gpu;
+        l.weights_gpu = cuda_make_array(l.weights, l.nweights);
+        if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);
+    }
+
+    if (train) l.delta_gpu =  cuda_make_array(l.delta, l.outputs*batch);
+    l.output_gpu = cuda_make_array(l.output, l.outputs*batch);
+
+    l.input_sizes_gpu = cuda_make_int_array_new_api(input_sizes, l.n);
+    l.layers_output_gpu = (float**)cuda_make_array_pointers((void**)layers_output_gpu, l.n);
+    l.layers_delta_gpu = (float**)cuda_make_array_pointers((void**)layers_delta_gpu, l.n);
+#endif  // GPU
+
+    l.bflops = l.out_w * l.out_h * l.out_c * l.n / 1000000000.;
+    if (l.weights_type) l.bflops *= 2;
+    fprintf(stderr, " wt = %d, wn = %d, outputs:%4d x%4d x%4d %5.3f BF\n", l.weights_type, l.weights_normalization, l.out_w, l.out_h, l.out_c, l.bflops);
+    return l;
+}
+
+void resize_shortcut_layer(layer *l, int w, int h, network *net)
+{
+    //assert(l->w == l->out_w);
+    //assert(l->h == l->out_h);
+    l->w = l->out_w = w;
+    l->h = l->out_h = h;
+    l->outputs = w*h*l->out_c;
+    l->inputs = l->outputs;
+    if (l->train) l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float));
+    l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float));
+
+    int i;
+    for (i = 0; i < l->n; ++i) {
+        int index = l->input_layers[i];
+        l->input_sizes[i] = net->layers[index].outputs;
+        l->layers_output[i] = net->layers[index].output;
+        l->layers_delta[i] = net->layers[index].delta;
+
+        assert(l->w == net->layers[index].out_w && l->h == net->layers[index].out_h);
+    }
+
+    if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, l->batch*l->outputs * sizeof(float));
+
+#ifdef GPU
+    cuda_free(l->output_gpu);
+    l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch);
+
+    if (l->train) {
+        cuda_free(l->delta_gpu);
+        l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch);
+    }
+
+    float **layers_output_gpu = (float **)calloc(l->n, sizeof(float *));
+    float **layers_delta_gpu = (float **)calloc(l->n, sizeof(float *));
+
+    for (i = 0; i < l->n; ++i) {
+        const int index = l->input_layers[i];
+        layers_output_gpu[i] = net->layers[index].output_gpu;
+        layers_delta_gpu[i] = net->layers[index].delta_gpu;
+    }
+
+    memcpy_ongpu(l->input_sizes_gpu, l->input_sizes, l->n * sizeof(int));
+    memcpy_ongpu(l->layers_output_gpu, layers_output_gpu, l->n * sizeof(float*));
+    memcpy_ongpu(l->layers_delta_gpu, layers_delta_gpu, l->n * sizeof(float*));
+
+    free(layers_output_gpu);
+    free(layers_delta_gpu);
+
+    if (l->activation == SWISH || l->activation == MISH) {
+        cuda_free(l->activation_input_gpu);
+        l->activation_input_gpu = cuda_make_array(l->activation_input, l->batch*l->outputs);
+    }
+#endif
+
+}
+
+void forward_shortcut_layer(const layer l, network_state state)
+{
+    int from_w = state.net.layers[l.index].w;
+    int from_h = state.net.layers[l.index].h;
+    int from_c = state.net.layers[l.index].c;
+
+    if (l.nweights == 0 && l.n == 1 && from_w == l.w && from_h == l.h && from_c == l.c) {
+        int size = l.batch * l.w * l.h * l.c;
+        int i;
+        #pragma omp parallel for
+        for(i = 0; i < size; ++i)
+            l.output[i] = state.input[i] + state.net.layers[l.index].output[i];
+    }
+    else {
+        shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes, l.layers_output, l.output, state.input, l.weights, l.nweights, l.weights_normalization);
+    }
+
+    //copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1);
+    //shortcut_cpu(l.batch, from_w, from_h, from_c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output);
+
+    //activate_array(l.output, l.outputs*l.batch, l.activation);
+    if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output);
+    else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output);
+    else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation);
+}
+
+void backward_shortcut_layer(const layer l, network_state state)
+{
+    if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta);
+    else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta);
+    else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
+
+    backward_shortcut_multilayer_cpu(l.outputs * l.batch, l.outputs, l.batch, l.n, l.input_sizes,
+        l.layers_delta, state.delta, l.delta, l.weights, l.weight_updates, l.nweights, state.input, l.layers_output, l.weights_normalization);
+
+    //axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1);
+    //shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta);
+}
+
+void update_shortcut_layer(layer l, int batch, float learning_rate_init, float momentum, float decay)
+{
+    if (l.nweights > 0) {
+        float learning_rate = learning_rate_init*l.learning_rate_scale;
+        //float momentum = a.momentum;
+        //float decay = a.decay;
+        //int batch = a.batch;
+
+        axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1);
+        axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1);
+        scal_cpu(l.nweights, momentum, l.weight_updates, 1);
+    }
+}
+
+#ifdef GPU
+void forward_shortcut_layer_gpu(const layer l, network_state state)
+{
+    //copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1);
+    //simple_copy_ongpu(l.outputs*l.batch, state.input, l.output_gpu);
+    //shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
+
+    //input_shortcut_gpu(state.input, l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
+
+    //-----------
+    //if (l.outputs == l.input_sizes[0])
+    //if(l.n == 1 && l.nweights == 0)
+    //{
+    //    input_shortcut_gpu(state.input, l.batch, state.net.layers[l.index].w, state.net.layers[l.index].h, state.net.layers[l.index].c,
+    //        state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu);
+    //}
+    //else
+    {
+        shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_output_gpu, l.output_gpu, state.input, l.weights_gpu, l.nweights, l.weights_normalization);
+    }
+
+    if (l.activation == SWISH) activate_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
+    else if (l.activation == MISH) activate_array_mish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.output_gpu);
+    else activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation);
+
+}
+
+void backward_shortcut_layer_gpu(const layer l, network_state state)
+{
+    if (l.activation == SWISH) gradient_array_swish_ongpu(l.output_gpu, l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu);
+    else if (l.activation == MISH) gradient_array_mish_ongpu(l.outputs*l.batch, l.activation_input_gpu, l.delta_gpu);
+    else gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu);
+
+    backward_shortcut_multilayer_gpu(l.outputs, l.batch, l.n, l.input_sizes_gpu, l.layers_delta_gpu, state.delta, l.delta_gpu,
+        l.weights_gpu, l.weight_updates_gpu, l.nweights, state.input, l.layers_output_gpu, l.weights_normalization);
+
+    //axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1);
+    //shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu);
+}
+
+void update_shortcut_layer_gpu(layer l, int batch, float learning_rate_init, float momentum, float decay, float loss_scale)
+{
+    if (l.nweights > 0) {
+        float learning_rate = learning_rate_init*l.learning_rate_scale / loss_scale;
+        //float momentum = a.momentum;
+        //float decay = a.decay;
+        //int batch = a.batch;
+
+        reset_nan_and_inf(l.weight_updates_gpu, l.nweights);
+        fix_nan_and_inf(l.weights_gpu, l.nweights);
+
+        //constrain_weight_updates_ongpu(l.nweights, 1, l.weights_gpu, l.weight_updates_gpu);
+        constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1);
+
+        /*
+        cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights);
+        cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights);
+        CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream()));
+        for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weight_updates[i]);
+        printf(" l.nweights = %d - updates \n", l.nweights);
+        for (int i = 0; i < l.nweights; ++i) printf(" %f, ", l.weights[i]);
+        printf(" l.nweights = %d \n\n", l.nweights);
+        */
+
+        //axpy_ongpu(l.nweights, -decay*batch, l.weights_gpu, 1, l.weight_updates_gpu, 1);
+        axpy_ongpu(l.nweights, learning_rate / batch, l.weight_updates_gpu, 1, l.weights_gpu, 1);
+        scal_ongpu(l.nweights, momentum, l.weight_updates_gpu, 1);
+
+        //fill_ongpu(l.nweights, 0, l.weight_updates_gpu, 1);
+
+        //if (l.clip) {
+        //    constrain_ongpu(l.nweights, l.clip, l.weights_gpu, 1);
+        //}
+    }
+}
+
+void pull_shortcut_layer(layer l)
+{
+    constrain_ongpu(l.nweights, 1, l.weight_updates_gpu, 1);
+    cuda_pull_array_async(l.weight_updates_gpu, l.weight_updates, l.nweights);
+    cuda_pull_array_async(l.weights_gpu, l.weights, l.nweights);
+    CHECK_CUDA(cudaPeekAtLastError());
+    CHECK_CUDA(cudaStreamSynchronize(get_cuda_stream()));
+}
+
+void push_shortcut_layer(layer l)
+{
+    cuda_push_array(l.weights_gpu, l.weights, l.nweights);
+    CHECK_CUDA(cudaPeekAtLastError());
+}
+#endif

--
Gitblit v1.8.0