From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/voxel.c |  328 +++++++++++++++++++++++++++---------------------------
 1 files changed, 164 insertions(+), 164 deletions(-)

diff --git a/lib/detecter_tools/darknet/voxel.c b/lib/detecter_tools/darknet/voxel.c
index 805f3d4..9f50112 100644
--- a/lib/detecter_tools/darknet/voxel.c
+++ b/lib/detecter_tools/darknet/voxel.c
@@ -1,164 +1,164 @@
-#include "network.h"
-#include "cost_layer.h"
-#include "utils.h"
-#include "parser.h"
-
-void extract_voxel(char *lfile, char *rfile, char *prefix)
-{
-#ifdef OPENCV
-    int w = 1920;
-    int h = 1080;
-    int shift = 0;
-    int count = 0;
-    cap_cv *lcap = get_capture_video_stream(lfile);
-    cap_cv *rcap = get_capture_video_stream(rfile);
-    while(1){
-        image l = get_image_from_stream_cpp(lcap);
-        image r = get_image_from_stream_cpp(rcap);
-        if(!l.w || !r.w) break;
-        if(count%100 == 0) {
-            shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
-            printf("%d\n", shift);
-        }
-        image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
-        image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
-        char buff[256];
-        sprintf(buff, "%s_%05d_l", prefix, count);
-        save_image(ls, buff);
-        sprintf(buff, "%s_%05d_r", prefix, count);
-        save_image(rs, buff);
-        free_image(l);
-        free_image(r);
-        free_image(ls);
-        free_image(rs);
-        ++count;
-    }
-
-#else
-    printf("need OpenCV for extraction\n");
-#endif
-}
-
-void train_voxel(char *cfgfile, char *weightfile)
-{
-    char* train_images = "data/imagenet/imagenet1k.train.list";
-    char* backup_directory = "backup/";
-    srand(time(0));
-    char *base = basecfg(cfgfile);
-    printf("%s\n", base);
-    float avg_loss = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch*net.subdivisions;
-    int i = *net.seen/imgs;
-    data train, buffer;
-
-
-    list *plist = get_paths(train_images);
-    //int N = plist->size;
-    char **paths = (char **)list_to_array(plist);
-
-    load_args args = {0};
-    args.w = net.w;
-    args.h = net.h;
-    args.scale = 4;
-    args.paths = paths;
-    args.n = imgs;
-    args.m = plist->size;
-    args.d = &buffer;
-    args.type = SUPER_DATA;
-
-    pthread_t load_thread = load_data_in_thread(args);
-    clock_t time;
-    //while(i*imgs < N*120){
-    while(get_current_batch(net) < net.max_batches){
-        i += 1;
-        time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
-        load_thread = load_data_in_thread(args);
-
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-
-        time=clock();
-        float loss = train_network(net, train);
-        if (avg_loss < 0) avg_loss = loss;
-        avg_loss = avg_loss*.9 + loss*.1;
-
-        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
-        if(i%1000==0){
-            char buff[256];
-            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
-            save_weights(net, buff);
-        }
-        if(i%100==0){
-            char buff[256];
-            sprintf(buff, "%s/%s.backup", backup_directory, base);
-            save_weights(net, buff);
-        }
-        free_data(train);
-    }
-    char buff[256];
-    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
-    save_weights(net, buff);
-}
-
-void test_voxel(char *cfgfile, char *weightfile, char *filename)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    srand(2222222);
-
-    clock_t time;
-    char buff[256];
-    char *input = buff;
-    while(1){
-        if(filename){
-            strncpy(input, filename, 256);
-        }else{
-            printf("Enter Image Path: ");
-            fflush(stdout);
-            input = fgets(input, 256, stdin);
-            if(!input) return;
-            strtok(input, "\n");
-        }
-        image im = load_image_color(input, 0, 0);
-        resize_network(&net, im.w, im.h);
-        printf("%d %d\n", im.w, im.h);
-
-        float *X = im.data;
-        time=clock();
-        network_predict(net, X);
-        image out = get_network_image(net);
-        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        save_image(out, "out");
-
-        free_image(im);
-        if (filename) break;
-    }
-}
-
-
-void run_voxel(int argc, char **argv)
-{
-    if(argc < 4){
-        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
-        return;
-    }
-
-    char *cfg = argv[3];
-    char *weights = (argc > 4) ? argv[4] : 0;
-    char *filename = (argc > 5) ? argv[5] : 0;
-    if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
-    else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
-    else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
-    /*
-       else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
-     */
-}
+#include "network.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+
+void extract_voxel(char *lfile, char *rfile, char *prefix)
+{
+#ifdef OPENCV
+    int w = 1920;
+    int h = 1080;
+    int shift = 0;
+    int count = 0;
+    cap_cv *lcap = get_capture_video_stream(lfile);
+    cap_cv *rcap = get_capture_video_stream(rfile);
+    while(1){
+        image l = get_image_from_stream_cpp(lcap);
+        image r = get_image_from_stream_cpp(rcap);
+        if(!l.w || !r.w) break;
+        if(count%100 == 0) {
+            shift = best_3d_shift_r(l, r, -l.h/100, l.h/100);
+            printf("%d\n", shift);
+        }
+        image ls = crop_image(l, (l.w - w)/2, (l.h - h)/2, w, h);
+        image rs = crop_image(r, 105 + (r.w - w)/2, (r.h - h)/2 + shift, w, h);
+        char buff[256];
+        sprintf(buff, "%s_%05d_l", prefix, count);
+        save_image(ls, buff);
+        sprintf(buff, "%s_%05d_r", prefix, count);
+        save_image(rs, buff);
+        free_image(l);
+        free_image(r);
+        free_image(ls);
+        free_image(rs);
+        ++count;
+    }
+
+#else
+    printf("need OpenCV for extraction\n");
+#endif
+}
+
+void train_voxel(char *cfgfile, char *weightfile)
+{
+    char* train_images = "data/imagenet/imagenet1k.train.list";
+    char* backup_directory = "backup/";
+    srand(time(0));
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    float avg_loss = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = net.batch*net.subdivisions;
+    int i = *net.seen/imgs;
+    data train, buffer;
+
+
+    list *plist = get_paths(train_images);
+    //int N = plist->size;
+    char **paths = (char **)list_to_array(plist);
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.scale = 4;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.d = &buffer;
+    args.type = SUPER_DATA;
+
+    pthread_t load_thread = load_data_in_thread(args);
+    clock_t time;
+    //while(i*imgs < N*120){
+    while(get_current_batch(net) < net.max_batches){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_in_thread(args);
+
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+
+        time=clock();
+        float loss = train_network(net, train);
+        if (avg_loss < 0) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        if(i%1000==0){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
+        if(i%100==0){
+            char buff[256];
+            sprintf(buff, "%s/%s.backup", backup_directory, base);
+            save_weights(net, buff);
+        }
+        free_data(train);
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+void test_voxel(char *cfgfile, char *weightfile, char *filename)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    srand(2222222);
+
+    clock_t time;
+    char buff[256];
+    char *input = buff;
+    while(1){
+        if(filename){
+            strncpy(input, filename, 256);
+        }else{
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input, 0, 0);
+        resize_network(&net, im.w, im.h);
+        printf("%d %d\n", im.w, im.h);
+
+        float *X = im.data;
+        time=clock();
+        network_predict(net, X);
+        image out = get_network_image(net);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        save_image(out, "out");
+
+        free_image(im);
+        if (filename) break;
+    }
+}
+
+
+void run_voxel(int argc, char **argv)
+{
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    char *filename = (argc > 5) ? argv[5] : 0;
+    if(0==strcmp(argv[2], "train")) train_voxel(cfg, weights);
+    else if(0==strcmp(argv[2], "test")) test_voxel(cfg, weights, filename);
+    else if(0==strcmp(argv[2], "extract")) extract_voxel(argv[3], argv[4], argv[5]);
+    /*
+       else if(0==strcmp(argv[2], "valid")) validate_voxel(cfg, weights);
+     */
+}

--
Gitblit v1.8.0