From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/yolo.c |  736 ++++++++++++++++++++++++++++----------------------------
 1 files changed, 368 insertions(+), 368 deletions(-)

diff --git a/lib/detecter_tools/darknet/yolo.c b/lib/detecter_tools/darknet/yolo.c
index 739e3a2..384c487 100644
--- a/lib/detecter_tools/darknet/yolo.c
+++ b/lib/detecter_tools/darknet/yolo.c
@@ -1,368 +1,368 @@
-#include "network.h"
-#include "detection_layer.h"
-#include "cost_layer.h"
-#include "utils.h"
-#include "parser.h"
-#include "box.h"
-#include "demo.h"
-
-char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
-
-void train_yolo(char *cfgfile, char *weightfile)
-{
-    char* train_images = "data/voc/train.txt";
-    char* backup_directory = "backup/";
-    srand(time(0));
-    char *base = basecfg(cfgfile);
-    printf("%s\n", base);
-    float avg_loss = -1;
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    int imgs = net.batch*net.subdivisions;
-    int i = *net.seen/imgs;
-    data train, buffer;
-
-
-    layer l = net.layers[net.n - 1];
-
-    int side = l.side;
-    int classes = l.classes;
-    float jitter = l.jitter;
-
-    list *plist = get_paths(train_images);
-    //int N = plist->size;
-    char **paths = (char **)list_to_array(plist);
-
-    load_args args = {0};
-    args.w = net.w;
-    args.h = net.h;
-    args.paths = paths;
-    args.n = imgs;
-    args.m = plist->size;
-    args.classes = classes;
-    args.jitter = jitter;
-    args.num_boxes = side;
-    args.d = &buffer;
-    args.type = REGION_DATA;
-
-    args.angle = net.angle;
-    args.exposure = net.exposure;
-    args.saturation = net.saturation;
-    args.hue = net.hue;
-
-    pthread_t load_thread = load_data_in_thread(args);
-    clock_t time;
-    //while(i*imgs < N*120){
-    while(get_current_batch(net) < net.max_batches){
-        i += 1;
-        time=clock();
-        pthread_join(load_thread, 0);
-        train = buffer;
-        load_thread = load_data_in_thread(args);
-
-        printf("Loaded: %lf seconds\n", sec(clock()-time));
-
-        time=clock();
-        float loss = train_network(net, train);
-        if (avg_loss < 0) avg_loss = loss;
-        avg_loss = avg_loss*.9 + loss*.1;
-
-        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
-        if(i%1000==0 || (i < 1000 && i%100 == 0)){
-            char buff[256];
-            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
-            save_weights(net, buff);
-        }
-        free_data(train);
-    }
-    char buff[256];
-    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
-    save_weights(net, buff);
-}
-
-void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
-{
-    int i, j;
-    for(i = 0; i < total; ++i){
-        float xmin = boxes[i].x - boxes[i].w/2.;
-        float xmax = boxes[i].x + boxes[i].w/2.;
-        float ymin = boxes[i].y - boxes[i].h/2.;
-        float ymax = boxes[i].y + boxes[i].h/2.;
-
-        if (xmin < 0) xmin = 0;
-        if (ymin < 0) ymin = 0;
-        if (xmax > w) xmax = w;
-        if (ymax > h) ymax = h;
-
-        for(j = 0; j < classes; ++j){
-            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
-                    xmin, ymin, xmax, ymax);
-        }
-    }
-}
-
-void validate_yolo(char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    char *base = "results/comp4_det_test_";
-    //list *plist = get_paths("data/voc.2007.test");
-    list* plist = get_paths("data/voc/2007_test.txt");
-    //list *plist = get_paths("data/voc.2012.test");
-    char **paths = (char **)list_to_array(plist);
-
-    layer l = net.layers[net.n-1];
-    int classes = l.classes;
-
-    int j;
-    FILE** fps = (FILE**)xcalloc(classes, sizeof(FILE*));
-    for(j = 0; j < classes; ++j){
-        char buff[1024];
-        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
-        fps[j] = fopen(buff, "w");
-    }
-    box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box));
-    float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*));
-    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float*)xcalloc(classes, sizeof(float));
-
-    int m = plist->size;
-    int i=0;
-    int t;
-
-    float thresh = .001;
-    int nms = 1;
-    float iou_thresh = .5;
-
-    int nthreads = 8;
-    image* val = (image*)xcalloc(nthreads, sizeof(image));
-    image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
-    image* buf = (image*)xcalloc(nthreads, sizeof(image));
-    image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
-    pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
-
-    load_args args = {0};
-    args.w = net.w;
-    args.h = net.h;
-    args.type = IMAGE_DATA;
-
-    for(t = 0; t < nthreads; ++t){
-        args.path = paths[i+t];
-        args.im = &buf[t];
-        args.resized = &buf_resized[t];
-        thr[t] = load_data_in_thread(args);
-    }
-    time_t start = time(0);
-    for(i = nthreads; i < m+nthreads; i += nthreads){
-        fprintf(stderr, "%d\n", i);
-        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
-            pthread_join(thr[t], 0);
-            val[t] = buf[t];
-            val_resized[t] = buf_resized[t];
-        }
-        for(t = 0; t < nthreads && i+t < m; ++t){
-            args.path = paths[i+t];
-            args.im = &buf[t];
-            args.resized = &buf_resized[t];
-            thr[t] = load_data_in_thread(args);
-        }
-        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
-            char *path = paths[i+t-nthreads];
-            char *id = basecfg(path);
-            float *X = val_resized[t].data;
-            network_predict(net, X);
-            int w = val[t].w;
-            int h = val[t].h;
-            get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
-            if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, classes, iou_thresh);
-            print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h);
-            free(id);
-            free_image(val[t]);
-            free_image(val_resized[t]);
-        }
-    }
-
-    if (fps) free(fps);
-    if (val) free(val);
-    if (val_resized) free(val_resized);
-    if (buf) free(buf);
-    if (buf_resized) free(buf_resized);
-    if (thr) free(thr);
-
-    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
-    for(j = 0; j < classes; ++j){
-        fclose(fps[j]);
-    }
-    free(fps);
-}
-
-void validate_yolo_recall(char *cfgfile, char *weightfile)
-{
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    set_batch_network(&net, 1);
-    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
-    srand(time(0));
-
-    list *plist = get_paths("data/voc.2007.test");
-    char **paths = (char **)list_to_array(plist);
-
-    layer l = net.layers[net.n-1];
-    int classes = l.classes;
-    int side = l.side;
-
-    int j, k;
-    box* boxes = (box*)xcalloc(side * side * l.n, sizeof(box));
-    float** probs = (float**)xcalloc(side * side * l.n, sizeof(float*));
-    for(j = 0; j < side*side*l.n; ++j) {
-        probs[j] = (float*)xcalloc(classes, sizeof(float));
-    }
-
-    int m = plist->size;
-    int i=0;
-
-    float thresh = .001;
-    float iou_thresh = .5;
-    float nms = 0;
-
-    int total = 0;
-    int correct = 0;
-    int proposals = 0;
-    float avg_iou = 0;
-
-    for(i = 0; i < m; ++i){
-        char *path = paths[i];
-        image orig = load_image_color(path, 0, 0);
-        image sized = resize_image(orig, net.w, net.h);
-        char *id = basecfg(path);
-        network_predict(net, sized.data);
-        get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1);
-        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
-
-        char labelpath[4096];
-		replace_image_to_label(path, labelpath);
-
-        int num_labels = 0;
-        box_label *truth = read_boxes(labelpath, &num_labels);
-        for(k = 0; k < side*side*l.n; ++k){
-            if(probs[k][0] > thresh){
-                ++proposals;
-            }
-        }
-        for (j = 0; j < num_labels; ++j) {
-            ++total;
-            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
-            float best_iou = 0;
-            for(k = 0; k < side*side*l.n; ++k){
-                float iou = box_iou(boxes[k], t);
-                if(probs[k][0] > thresh && iou > best_iou){
-                    best_iou = iou;
-                }
-            }
-            avg_iou += best_iou;
-            if(best_iou > iou_thresh){
-                ++correct;
-            }
-        }
-
-        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
-        free(id);
-        free_image(orig);
-        free_image(sized);
-    }
-}
-
-void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
-{
-    image **alphabet = load_alphabet();
-    network net = parse_network_cfg(cfgfile);
-    if(weightfile){
-        load_weights(&net, weightfile);
-    }
-    detection_layer l = net.layers[net.n-1];
-    set_batch_network(&net, 1);
-    srand(2222222);
-    char buff[256];
-    char *input = buff;
-    int j;
-    float nms=.4;
-    box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box));
-    float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*));
-    for(j = 0; j < l.side*l.side*l.n; ++j) {
-        probs[j] = (float*)xcalloc(l.classes, sizeof(float));
-    }
-    while(1){
-        if(filename){
-            strncpy(input, filename, 256);
-        } else {
-            printf("Enter Image Path: ");
-            fflush(stdout);
-            input = fgets(input, 256, stdin);
-            if(!input) return;
-            strtok(input, "\n");
-        }
-        image im = load_image_color(input,0,0);
-        image sized = resize_image(im, net.w, net.h);
-        float *X = sized.data;
-        clock_t time=clock();
-        network_predict(net, X);
-        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
-        get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
-        if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms);
-        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
-        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
-        save_image(im, "predictions");
-        show_image(im, "predictions");
-
-        free_image(im);
-        free_image(sized);
-
-        wait_until_press_key_cv();
-        destroy_all_windows_cv();
-
-        if (filename) break;
-    }
-    free(boxes);
-    for(j = 0; j < l.side*l.side*l.n; ++j) {
-        free(probs[j]);
-    }
-    free(probs);
-}
-
-void run_yolo(int argc, char **argv)
-{
-	int dont_show = find_arg(argc, argv, "-dont_show");
-	int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
-    int json_port = find_int_arg(argc, argv, "-json_port", -1);
-	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
-    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
-    float thresh = find_float_arg(argc, argv, "-thresh", .2);
-	float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
-    int cam_index = find_int_arg(argc, argv, "-c", 0);
-    int frame_skip = find_int_arg(argc, argv, "-s", 0);
-	int ext_output = find_arg(argc, argv, "-ext_output");
-    if(argc < 4){
-        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
-        return;
-    }
-
-    char *cfg = argv[3];
-    char *weights = (argc > 4) ? argv[4] : 0;
-    char *filename = (argc > 5) ? argv[5]: 0;
-    if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
-    else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
-    else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
-    else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
-    else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, voc_names, 20, frame_skip,
-		prefix, out_filename, mjpeg_port, 0, json_port, dont_show, ext_output, 0, 0, 0, 0, 0);
-}
+#include "network.h"
+#include "detection_layer.h"
+#include "cost_layer.h"
+#include "utils.h"
+#include "parser.h"
+#include "box.h"
+#include "demo.h"
+
+char *voc_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
+
+void train_yolo(char *cfgfile, char *weightfile)
+{
+    char* train_images = "data/voc/train.txt";
+    char* backup_directory = "backup/";
+    srand(time(0));
+    char *base = basecfg(cfgfile);
+    printf("%s\n", base);
+    float avg_loss = -1;
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    int imgs = net.batch*net.subdivisions;
+    int i = *net.seen/imgs;
+    data train, buffer;
+
+
+    layer l = net.layers[net.n - 1];
+
+    int side = l.side;
+    int classes = l.classes;
+    float jitter = l.jitter;
+
+    list *plist = get_paths(train_images);
+    //int N = plist->size;
+    char **paths = (char **)list_to_array(plist);
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.paths = paths;
+    args.n = imgs;
+    args.m = plist->size;
+    args.classes = classes;
+    args.jitter = jitter;
+    args.num_boxes = side;
+    args.d = &buffer;
+    args.type = REGION_DATA;
+
+    args.angle = net.angle;
+    args.exposure = net.exposure;
+    args.saturation = net.saturation;
+    args.hue = net.hue;
+
+    pthread_t load_thread = load_data_in_thread(args);
+    clock_t time;
+    //while(i*imgs < N*120){
+    while(get_current_batch(net) < net.max_batches){
+        i += 1;
+        time=clock();
+        pthread_join(load_thread, 0);
+        train = buffer;
+        load_thread = load_data_in_thread(args);
+
+        printf("Loaded: %lf seconds\n", sec(clock()-time));
+
+        time=clock();
+        float loss = train_network(net, train);
+        if (avg_loss < 0) avg_loss = loss;
+        avg_loss = avg_loss*.9 + loss*.1;
+
+        printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs);
+        if(i%1000==0 || (i < 1000 && i%100 == 0)){
+            char buff[256];
+            sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i);
+            save_weights(net, buff);
+        }
+        free_data(train);
+    }
+    char buff[256];
+    sprintf(buff, "%s/%s_final.weights", backup_directory, base);
+    save_weights(net, buff);
+}
+
+void print_yolo_detections(FILE **fps, char *id, box *boxes, float **probs, int total, int classes, int w, int h)
+{
+    int i, j;
+    for(i = 0; i < total; ++i){
+        float xmin = boxes[i].x - boxes[i].w/2.;
+        float xmax = boxes[i].x + boxes[i].w/2.;
+        float ymin = boxes[i].y - boxes[i].h/2.;
+        float ymax = boxes[i].y + boxes[i].h/2.;
+
+        if (xmin < 0) xmin = 0;
+        if (ymin < 0) ymin = 0;
+        if (xmax > w) xmax = w;
+        if (ymax > h) ymax = h;
+
+        for(j = 0; j < classes; ++j){
+            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
+                    xmin, ymin, xmax, ymax);
+        }
+    }
+}
+
+void validate_yolo(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    char *base = "results/comp4_det_test_";
+    //list *plist = get_paths("data/voc.2007.test");
+    list* plist = get_paths("data/voc/2007_test.txt");
+    //list *plist = get_paths("data/voc.2012.test");
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+
+    int j;
+    FILE** fps = (FILE**)xcalloc(classes, sizeof(FILE*));
+    for(j = 0; j < classes; ++j){
+        char buff[1024];
+        snprintf(buff, 1024, "%s%s.txt", base, voc_names[j]);
+        fps[j] = fopen(buff, "w");
+    }
+    box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box));
+    float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*));
+    for(j = 0; j < l.side*l.side*l.n; ++j) probs[j] = (float*)xcalloc(classes, sizeof(float));
+
+    int m = plist->size;
+    int i=0;
+    int t;
+
+    float thresh = .001;
+    int nms = 1;
+    float iou_thresh = .5;
+
+    int nthreads = 8;
+    image* val = (image*)xcalloc(nthreads, sizeof(image));
+    image* val_resized = (image*)xcalloc(nthreads, sizeof(image));
+    image* buf = (image*)xcalloc(nthreads, sizeof(image));
+    image* buf_resized = (image*)xcalloc(nthreads, sizeof(image));
+    pthread_t* thr = (pthread_t*)xcalloc(nthreads, sizeof(pthread_t));
+
+    load_args args = {0};
+    args.w = net.w;
+    args.h = net.h;
+    args.type = IMAGE_DATA;
+
+    for(t = 0; t < nthreads; ++t){
+        args.path = paths[i+t];
+        args.im = &buf[t];
+        args.resized = &buf_resized[t];
+        thr[t] = load_data_in_thread(args);
+    }
+    time_t start = time(0);
+    for(i = nthreads; i < m+nthreads; i += nthreads){
+        fprintf(stderr, "%d\n", i);
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            pthread_join(thr[t], 0);
+            val[t] = buf[t];
+            val_resized[t] = buf_resized[t];
+        }
+        for(t = 0; t < nthreads && i+t < m; ++t){
+            args.path = paths[i+t];
+            args.im = &buf[t];
+            args.resized = &buf_resized[t];
+            thr[t] = load_data_in_thread(args);
+        }
+        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
+            char *path = paths[i+t-nthreads];
+            char *id = basecfg(path);
+            float *X = val_resized[t].data;
+            network_predict(net, X);
+            int w = val[t].w;
+            int h = val[t].h;
+            get_detection_boxes(l, w, h, thresh, probs, boxes, 0);
+            if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, classes, iou_thresh);
+            print_yolo_detections(fps, id, boxes, probs, l.side*l.side*l.n, classes, w, h);
+            free(id);
+            free_image(val[t]);
+            free_image(val_resized[t]);
+        }
+    }
+
+    if (fps) free(fps);
+    if (val) free(val);
+    if (val_resized) free(val_resized);
+    if (buf) free(buf);
+    if (buf_resized) free(buf_resized);
+    if (thr) free(thr);
+
+    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
+    for(j = 0; j < classes; ++j){
+        fclose(fps[j]);
+    }
+    free(fps);
+}
+
+void validate_yolo_recall(char *cfgfile, char *weightfile)
+{
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    set_batch_network(&net, 1);
+    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
+    srand(time(0));
+
+    list *plist = get_paths("data/voc.2007.test");
+    char **paths = (char **)list_to_array(plist);
+
+    layer l = net.layers[net.n-1];
+    int classes = l.classes;
+    int side = l.side;
+
+    int j, k;
+    box* boxes = (box*)xcalloc(side * side * l.n, sizeof(box));
+    float** probs = (float**)xcalloc(side * side * l.n, sizeof(float*));
+    for(j = 0; j < side*side*l.n; ++j) {
+        probs[j] = (float*)xcalloc(classes, sizeof(float));
+    }
+
+    int m = plist->size;
+    int i=0;
+
+    float thresh = .001;
+    float iou_thresh = .5;
+    float nms = 0;
+
+    int total = 0;
+    int correct = 0;
+    int proposals = 0;
+    float avg_iou = 0;
+
+    for(i = 0; i < m; ++i){
+        char *path = paths[i];
+        image orig = load_image_color(path, 0, 0);
+        image sized = resize_image(orig, net.w, net.h);
+        char *id = basecfg(path);
+        network_predict(net, sized.data);
+        get_detection_boxes(l, orig.w, orig.h, thresh, probs, boxes, 1);
+        if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms);
+
+        char labelpath[4096];
+		replace_image_to_label(path, labelpath);
+
+        int num_labels = 0;
+        box_label *truth = read_boxes(labelpath, &num_labels);
+        for(k = 0; k < side*side*l.n; ++k){
+            if(probs[k][0] > thresh){
+                ++proposals;
+            }
+        }
+        for (j = 0; j < num_labels; ++j) {
+            ++total;
+            box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
+            float best_iou = 0;
+            for(k = 0; k < side*side*l.n; ++k){
+                float iou = box_iou(boxes[k], t);
+                if(probs[k][0] > thresh && iou > best_iou){
+                    best_iou = iou;
+                }
+            }
+            avg_iou += best_iou;
+            if(best_iou > iou_thresh){
+                ++correct;
+            }
+        }
+
+        fprintf(stderr, "%5d %5d %5d\tRPs/Img: %.2f\tIOU: %.2f%%\tRecall:%.2f%%\n", i, correct, total, (float)proposals/(i+1), avg_iou*100/total, 100.*correct/total);
+        free(id);
+        free_image(orig);
+        free_image(sized);
+    }
+}
+
+void test_yolo(char *cfgfile, char *weightfile, char *filename, float thresh)
+{
+    image **alphabet = load_alphabet();
+    network net = parse_network_cfg(cfgfile);
+    if(weightfile){
+        load_weights(&net, weightfile);
+    }
+    detection_layer l = net.layers[net.n-1];
+    set_batch_network(&net, 1);
+    srand(2222222);
+    char buff[256];
+    char *input = buff;
+    int j;
+    float nms=.4;
+    box* boxes = (box*)xcalloc(l.side * l.side * l.n, sizeof(box));
+    float** probs = (float**)xcalloc(l.side * l.side * l.n, sizeof(float*));
+    for(j = 0; j < l.side*l.side*l.n; ++j) {
+        probs[j] = (float*)xcalloc(l.classes, sizeof(float));
+    }
+    while(1){
+        if(filename){
+            strncpy(input, filename, 256);
+        } else {
+            printf("Enter Image Path: ");
+            fflush(stdout);
+            input = fgets(input, 256, stdin);
+            if(!input) return;
+            strtok(input, "\n");
+        }
+        image im = load_image_color(input,0,0);
+        image sized = resize_image(im, net.w, net.h);
+        float *X = sized.data;
+        clock_t time=clock();
+        network_predict(net, X);
+        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
+        get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0);
+        if (nms) do_nms_sort_v2(boxes, probs, l.side*l.side*l.n, l.classes, nms);
+        //draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
+        draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, voc_names, alphabet, 20);
+        save_image(im, "predictions");
+        show_image(im, "predictions");
+
+        free_image(im);
+        free_image(sized);
+
+        wait_until_press_key_cv();
+        destroy_all_windows_cv();
+
+        if (filename) break;
+    }
+    free(boxes);
+    for(j = 0; j < l.side*l.side*l.n; ++j) {
+        free(probs[j]);
+    }
+    free(probs);
+}
+
+void run_yolo(int argc, char **argv)
+{
+	int dont_show = find_arg(argc, argv, "-dont_show");
+	int mjpeg_port = find_int_arg(argc, argv, "-mjpeg_port", -1);
+    int json_port = find_int_arg(argc, argv, "-json_port", -1);
+	char *out_filename = find_char_arg(argc, argv, "-out_filename", 0);
+    char *prefix = find_char_arg(argc, argv, "-prefix", 0);
+    float thresh = find_float_arg(argc, argv, "-thresh", .2);
+	float hier_thresh = find_float_arg(argc, argv, "-hier", .5);
+    int cam_index = find_int_arg(argc, argv, "-c", 0);
+    int frame_skip = find_int_arg(argc, argv, "-s", 0);
+	int ext_output = find_arg(argc, argv, "-ext_output");
+    if(argc < 4){
+        fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]);
+        return;
+    }
+
+    char *cfg = argv[3];
+    char *weights = (argc > 4) ? argv[4] : 0;
+    char *filename = (argc > 5) ? argv[5]: 0;
+    if(0==strcmp(argv[2], "test")) test_yolo(cfg, weights, filename, thresh);
+    else if(0==strcmp(argv[2], "train")) train_yolo(cfg, weights);
+    else if(0==strcmp(argv[2], "valid")) validate_yolo(cfg, weights);
+    else if(0==strcmp(argv[2], "recall")) validate_yolo_recall(cfg, weights);
+    else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, hier_thresh, cam_index, filename, voc_names, 20, 1, frame_skip,
+		prefix, out_filename, mjpeg_port, 0, json_port, dont_show, ext_output, 0, 0, 0, 0, 0);
+}

--
Gitblit v1.8.0