From 168af40fe9a3cc81c6ee16b3e81f154780c36bdb Mon Sep 17 00:00:00 2001
From: Scheaven <xuepengqiang>
Date: 星期四, 03 六月 2021 15:03:27 +0800
Subject: [PATCH] up new v4

---
 lib/detecter_tools/darknet/yolo_layer.c | 2138 ++++++++++++++++++++++++++++++++++-------------------------
 1 files changed, 1,229 insertions(+), 909 deletions(-)

diff --git a/lib/detecter_tools/darknet/yolo_layer.c b/lib/detecter_tools/darknet/yolo_layer.c
index 596a502..883d755 100644
--- a/lib/detecter_tools/darknet/yolo_layer.c
+++ b/lib/detecter_tools/darknet/yolo_layer.c
@@ -1,909 +1,1229 @@
-#include "yolo_layer.h"
-#include "activations.h"
-#include "blas.h"
-#include "box.h"
-#include "dark_cuda.h"
-#include "utils.h"
-
-#include <math.h>
-#include <stdio.h>
-#include <assert.h>
-#include <string.h>
-#include <stdlib.h>
-
-extern int check_mistakes;
-
-layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
-{
-    int i;
-    layer l = { (LAYER_TYPE)0 };
-    l.type = YOLO;
-
-    l.n = n;
-    l.total = total;
-    l.batch = batch;
-    l.h = h;
-    l.w = w;
-    l.c = n*(classes + 4 + 1);
-    l.out_w = l.w;
-    l.out_h = l.h;
-    l.out_c = l.c;
-    l.classes = classes;
-    l.cost = (float*)xcalloc(1, sizeof(float));
-    l.biases = (float*)xcalloc(total * 2, sizeof(float));
-    if(mask) l.mask = mask;
-    else{
-        l.mask = (int*)xcalloc(n, sizeof(int));
-        for(i = 0; i < n; ++i){
-            l.mask[i] = i;
-        }
-    }
-    l.bias_updates = (float*)xcalloc(n * 2, sizeof(float));
-    l.outputs = h*w*n*(classes + 4 + 1);
-    l.inputs = l.outputs;
-    l.max_boxes = max_boxes;
-    l.truths = l.max_boxes*(4 + 1);    // 90*(4 + 1);
-    l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
-    l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
-    for(i = 0; i < total*2; ++i){
-        l.biases[i] = .5;
-    }
-
-    l.forward = forward_yolo_layer;
-    l.backward = backward_yolo_layer;
-#ifdef GPU
-    l.forward_gpu = forward_yolo_layer_gpu;
-    l.backward_gpu = backward_yolo_layer_gpu;
-    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
-    l.output_avg_gpu = cuda_make_array(l.output, batch*l.outputs);
-    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
-
-    free(l.output);
-    if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
-    else {
-        cudaGetLastError(); // reset CUDA-error
-        l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
-    }
-
-    free(l.delta);
-    if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
-    else {
-        cudaGetLastError(); // reset CUDA-error
-        l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
-    }
-#endif
-
-    fprintf(stderr, "yolo\n");
-    srand(time(0));
-
-    return l;
-}
-
-void resize_yolo_layer(layer *l, int w, int h)
-{
-    l->w = w;
-    l->h = h;
-
-    l->outputs = h*w*l->n*(l->classes + 4 + 1);
-    l->inputs = l->outputs;
-
-    if (!l->output_pinned) l->output = (float*)xrealloc(l->output, l->batch*l->outputs * sizeof(float));
-    if (!l->delta_pinned) l->delta = (float*)xrealloc(l->delta, l->batch*l->outputs*sizeof(float));
-
-#ifdef GPU
-    if (l->output_pinned) {
-        CHECK_CUDA(cudaFreeHost(l->output));
-        if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
-            cudaGetLastError(); // reset CUDA-error
-            l->output = (float*)xcalloc(l->batch * l->outputs, sizeof(float));
-            l->output_pinned = 0;
-        }
-    }
-
-    if (l->delta_pinned) {
-        CHECK_CUDA(cudaFreeHost(l->delta));
-        if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
-            cudaGetLastError(); // reset CUDA-error
-            l->delta = (float*)xcalloc(l->batch * l->outputs, sizeof(float));
-            l->delta_pinned = 0;
-        }
-    }
-
-    cuda_free(l->delta_gpu);
-    cuda_free(l->output_gpu);
-    cuda_free(l->output_avg_gpu);
-
-    l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
-    l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
-    l->output_avg_gpu = cuda_make_array(l->output, l->batch*l->outputs);
-#endif
-}
-
-box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride)
-{
-    box b;
-    // ln - natural logarithm (base = e)
-    // x` = t.x * lw - i;   // x = ln(x`/(1-x`))   // x - output of previous conv-layer
-    // y` = t.y * lh - i;   // y = ln(y`/(1-y`))   // y - output of previous conv-layer
-                            // w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer
-                            // h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer
-    b.x = (i + x[index + 0*stride]) / lw;
-    b.y = (j + x[index + 1*stride]) / lh;
-    b.w = exp(x[index + 2*stride]) * biases[2*n]   / w;
-    b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h;
-    return b;
-}
-
-static inline float fix_nan_inf(float val)
-{
-    if (isnan(val) || isinf(val)) val = 0;
-    return val;
-}
-
-static inline float clip_value(float val, const float max_val)
-{
-    if (val > max_val) {
-        //printf("\n val = %f > max_val = %f \n", val, max_val);
-        val = max_val;
-    }
-    else if (val < -max_val) {
-        //printf("\n val = %f < -max_val = %f \n", val, -max_val);
-        val = -max_val;
-    }
-    return val;
-}
-
-ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, int accumulate, float max_delta)
-{
-    ious all_ious = { 0 };
-    // i - step in layer width
-    // j - step in layer height
-    //  Returns a box in absolute coordinates
-    box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride);
-    all_ious.iou = box_iou(pred, truth);
-    all_ious.giou = box_giou(pred, truth);
-    all_ious.diou = box_diou(pred, truth);
-    all_ious.ciou = box_ciou(pred, truth);
-    // avoid nan in dx_box_iou
-    if (pred.w == 0) { pred.w = 1.0; }
-    if (pred.h == 0) { pred.h = 1.0; }
-    if (iou_loss == MSE)    // old loss
-    {
-        float tx = (truth.x*lw - i);
-        float ty = (truth.y*lh - j);
-        float tw = log(truth.w*w / biases[2 * n]);
-        float th = log(truth.h*h / biases[2 * n + 1]);
-
-        //printf(" tx = %f, ty = %f, tw = %f, th = %f \n", tx, ty, tw, th);
-        //printf(" x = %f, y = %f, w = %f, h = %f \n", x[index + 0 * stride], x[index + 1 * stride], x[index + 2 * stride], x[index + 3 * stride]);
-
-        // accumulate delta
-        delta[index + 0 * stride] += scale * (tx - x[index + 0 * stride]) * iou_normalizer;
-        delta[index + 1 * stride] += scale * (ty - x[index + 1 * stride]) * iou_normalizer;
-        delta[index + 2 * stride] += scale * (tw - x[index + 2 * stride]) * iou_normalizer;
-        delta[index + 3 * stride] += scale * (th - x[index + 3 * stride]) * iou_normalizer;
-    }
-    else {
-        // https://github.com/generalized-iou/g-darknet
-        // https://arxiv.org/abs/1902.09630v2
-        // https://giou.stanford.edu/
-        all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss);
-
-        // jacobian^t (transpose)
-        //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr);
-        //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db);
-        //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr));
-        //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db));
-
-        // jacobian^t (transpose)
-        float dx = all_ious.dx_iou.dt;
-        float dy = all_ious.dx_iou.db;
-        float dw = all_ious.dx_iou.dl;
-        float dh = all_ious.dx_iou.dr;
-
-        // predict exponential, apply gradient of e^delta_t ONLY for w,h
-        dw *= exp(x[index + 2 * stride]);
-        dh *= exp(x[index + 3 * stride]);
-
-        // normalize iou weight
-        dx *= iou_normalizer;
-        dy *= iou_normalizer;
-        dw *= iou_normalizer;
-        dh *= iou_normalizer;
-
-
-        dx = fix_nan_inf(dx);
-        dy = fix_nan_inf(dy);
-        dw = fix_nan_inf(dw);
-        dh = fix_nan_inf(dh);
-
-        if (max_delta != FLT_MAX) {
-            dx = clip_value(dx, max_delta);
-            dy = clip_value(dy, max_delta);
-            dw = clip_value(dw, max_delta);
-            dh = clip_value(dh, max_delta);
-        }
-
-
-        if (!accumulate) {
-            delta[index + 0 * stride] = 0;
-            delta[index + 1 * stride] = 0;
-            delta[index + 2 * stride] = 0;
-            delta[index + 3 * stride] = 0;
-        }
-
-        // accumulate delta
-        delta[index + 0 * stride] += dx;
-        delta[index + 1 * stride] += dy;
-        delta[index + 2 * stride] += dw;
-        delta[index + 3 * stride] += dh;
-    }
-
-    return all_ious;
-}
-
-void averages_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta)
-{
-
-    int classes_in_one_box = 0;
-    int c;
-    for (c = 0; c < classes; ++c) {
-        if (delta[class_index + stride*c] > 0) classes_in_one_box++;
-    }
-
-    if (classes_in_one_box > 0) {
-        delta[box_index + 0 * stride] /= classes_in_one_box;
-        delta[box_index + 1 * stride] /= classes_in_one_box;
-        delta[box_index + 2 * stride] /= classes_in_one_box;
-        delta[box_index + 3 * stride] /= classes_in_one_box;
-    }
-}
-
-void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss, float label_smooth_eps, float *classes_multipliers)
-{
-    int n;
-    if (delta[index + stride*class_id]){
-        float y_true = 1;
-        if(label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
-        float result_delta = y_true - output[index + stride*class_id];
-        if(!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*class_id] = result_delta;
-        //delta[index + stride*class_id] = 1 - output[index + stride*class_id];
-
-        if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id];
-        if(avg_cat) *avg_cat += output[index + stride*class_id];
-        return;
-    }
-    // Focal loss
-    if (focal_loss) {
-        // Focal Loss
-        float alpha = 0.5;    // 0.25 or 0.5
-        //float gamma = 2;    // hardcoded in many places of the grad-formula
-
-        int ti = index + stride*class_id;
-        float pt = output[ti] + 0.000000000000001F;
-        // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
-        float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1);    // http://blog.csdn.net/linmingan/article/details/77885832
-        //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1);    // https://github.com/unsky/focal-loss
-
-        for (n = 0; n < classes; ++n) {
-            delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]);
-
-            delta[index + stride*n] *= alpha*grad;
-
-            if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
-        }
-    }
-    else {
-        // default
-        for (n = 0; n < classes; ++n) {
-            float y_true = ((n == class_id) ? 1 : 0);
-            if (label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
-            float result_delta = y_true - output[index + stride*n];
-            if (!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*n] = result_delta;
-
-            if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id];
-            if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
-        }
-    }
-}
-
-int compare_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh)
-{
-    int j;
-    for (j = 0; j < classes; ++j) {
-        //float prob = objectness * output[class_index + stride*j];
-        float prob = output[class_index + stride*j];
-        if (prob > conf_thresh) {
-            return 1;
-        }
-    }
-    return 0;
-}
-
-static int entry_index(layer l, int batch, int location, int entry)
-{
-    int n =   location / (l.w*l.h);
-    int loc = location % (l.w*l.h);
-    return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc;
-}
-
-void forward_yolo_layer(const layer l, network_state state)
-{
-    int i, j, b, t, n;
-    memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float));
-
-#ifndef GPU
-    for (b = 0; b < l.batch; ++b) {
-        for (n = 0; n < l.n; ++n) {
-            int index = entry_index(l, b, n*l.w*l.h, 0);
-            activate_array(l.output + index, 2 * l.w*l.h, LOGISTIC);        // x,y,
-            scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1);    // scale x,y
-            index = entry_index(l, b, n*l.w*l.h, 4);
-            activate_array(l.output + index, (1 + l.classes)*l.w*l.h, LOGISTIC);
-        }
-    }
-#endif
-
-    // delta is zeroed
-    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
-    if (!state.train) return;
-    //float avg_iou = 0;
-    float tot_iou = 0;
-    float tot_giou = 0;
-    float tot_diou = 0;
-    float tot_ciou = 0;
-    float tot_iou_loss = 0;
-    float tot_giou_loss = 0;
-    float tot_diou_loss = 0;
-    float tot_ciou_loss = 0;
-    float recall = 0;
-    float recall75 = 0;
-    float avg_cat = 0;
-    float avg_obj = 0;
-    float avg_anyobj = 0;
-    int count = 0;
-    int class_count = 0;
-    *(l.cost) = 0;
-    for (b = 0; b < l.batch; ++b) {
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    const int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
-                    const int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4);
-                    const int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
-                    const int stride = l.w*l.h;
-                    box pred = get_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h);
-                    float best_match_iou = 0;
-                    int best_match_t = 0;
-                    float best_iou = 0;
-                    int best_t = 0;
-                    for (t = 0; t < l.max_boxes; ++t) {
-                        box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
-                        int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
-                        if (class_id >= l.classes || class_id < 0) {
-                            printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1);
-                            printf("\n truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id);
-                            if (check_mistakes) getchar();
-                            continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value
-                        }
-                        if (!truth.x) break;  // continue;
-
-                        float objectness = l.output[obj_index];
-                        if (isnan(objectness) || isinf(objectness)) l.output[obj_index] = 0;
-                        int class_id_match = compare_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f);
-
-                        float iou = box_iou(pred, truth);
-                        if (iou > best_match_iou && class_id_match == 1) {
-                            best_match_iou = iou;
-                            best_match_t = t;
-                        }
-                        if (iou > best_iou) {
-                            best_iou = iou;
-                            best_t = t;
-                        }
-                    }
-
-                    avg_anyobj += l.output[obj_index];
-                    l.delta[obj_index] = l.cls_normalizer * (0 - l.output[obj_index]);
-                    if (best_match_iou > l.ignore_thresh) {
-                        const float iou_multiplier = best_match_iou*best_match_iou;// (best_match_iou - l.ignore_thresh) / (1.0 - l.ignore_thresh);
-                        if (l.objectness_smooth) {
-                            l.delta[obj_index] = l.cls_normalizer * (iou_multiplier - l.output[obj_index]);
-
-                            int class_id = state.truth[best_match_t*(4 + 1) + b*l.truths + 4];
-                            if (l.map) class_id = l.map[class_id];
-                            const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                            l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]);
-                        }
-                        else l.delta[obj_index] = 0;
-                    }
-                    else if (state.net.adversarial) {
-                        int stride = l.w*l.h;
-                        float scale = pred.w * pred.h;
-                        if (scale > 0) scale = sqrt(scale);
-                        l.delta[obj_index] = scale * l.cls_normalizer * (0 - l.output[obj_index]);
-                        int cl_id;
-                        for (cl_id = 0; cl_id < l.classes; ++cl_id) {
-                            if(l.output[class_index + stride*cl_id] * l.output[obj_index] > 0.25)
-                                l.delta[class_index + stride*cl_id] = scale * (0 - l.output[class_index + stride*cl_id]);
-                        }
-                    }
-                    if (best_iou > l.truth_thresh) {
-                        const float iou_multiplier = best_iou*best_iou;// (best_iou - l.truth_thresh) / (1.0 - l.truth_thresh);
-                        if (l.objectness_smooth) l.delta[obj_index] = l.cls_normalizer * (iou_multiplier - l.output[obj_index]);
-                        else l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
-                        //l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
-
-                        int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4];
-                        if (l.map) class_id = l.map[class_id];
-                        delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
-                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                        if (l.objectness_smooth) l.delta[class_index + stride*class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride*class_id]);
-                        box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
-                        delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta);
-                    }
-                }
-            }
-        }
-        for (t = 0; t < l.max_boxes; ++t) {
-            box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
-            if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) {
-                char buff[256];
-                printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h);
-                sprintf(buff, "echo \"Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f\" >> bad_label.list",
-                    truth.x, truth.y, truth.w, truth.h);
-                system(buff);
-            }
-            int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
-            if (class_id >= l.classes || class_id < 0) continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value
-
-            if (!truth.x) break;  // continue;
-            float best_iou = 0;
-            int best_n = 0;
-            i = (truth.x * l.w);
-            j = (truth.y * l.h);
-            box truth_shift = truth;
-            truth_shift.x = truth_shift.y = 0;
-            for (n = 0; n < l.total; ++n) {
-                box pred = { 0 };
-                pred.w = l.biases[2 * n] / state.net.w;
-                pred.h = l.biases[2 * n + 1] / state.net.h;
-                float iou = box_iou(pred, truth_shift);
-                if (iou > best_iou) {
-                    best_iou = iou;
-                    best_n = n;
-                }
-            }
-
-            int mask_n = int_index(l.mask, best_n, l.n);
-            if (mask_n >= 0) {
-                int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
-                if (l.map) class_id = l.map[class_id];
-
-                int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
-                const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta);
-
-                // range is 0 <= 1
-                tot_iou += all_ious.iou;
-                tot_iou_loss += 1 - all_ious.iou;
-                // range is -1 <= giou <= 1
-                tot_giou += all_ious.giou;
-                tot_giou_loss += 1 - all_ious.giou;
-
-                tot_diou += all_ious.diou;
-                tot_diou_loss += 1 - all_ious.diou;
-
-                tot_ciou += all_ious.ciou;
-                tot_ciou_loss += 1 - all_ious.ciou;
-
-                int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
-                avg_obj += l.output[obj_index];
-                l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
-
-                int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
-                delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
-
-                //printf(" label: class_id = %d, truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", class_id, truth.x, truth.y, truth.w, truth.h);
-                //printf(" mask_n = %d, l.output[obj_index] = %f, l.output[class_index + class_id] = %f \n\n", mask_n, l.output[obj_index], l.output[class_index + class_id]);
-
-                ++count;
-                ++class_count;
-                if (all_ious.iou > .5) recall += 1;
-                if (all_ious.iou > .75) recall75 += 1;
-            }
-
-            // iou_thresh
-            for (n = 0; n < l.total; ++n) {
-                int mask_n = int_index(l.mask, n, l.n);
-                if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) {
-                    box pred = { 0 };
-                    pred.w = l.biases[2 * n] / state.net.w;
-                    pred.h = l.biases[2 * n + 1] / state.net.h;
-                    float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU
-                    // iou, n
-
-                    if (iou > l.iou_thresh) {
-                        int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
-                        if (l.map) class_id = l.map[class_id];
-
-                        int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
-                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
-                        ious all_ious = delta_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta);
-
-                        // range is 0 <= 1
-                        tot_iou += all_ious.iou;
-                        tot_iou_loss += 1 - all_ious.iou;
-                        // range is -1 <= giou <= 1
-                        tot_giou += all_ious.giou;
-                        tot_giou_loss += 1 - all_ious.giou;
-
-                        tot_diou += all_ious.diou;
-                        tot_diou_loss += 1 - all_ious.diou;
-
-                        tot_ciou += all_ious.ciou;
-                        tot_ciou_loss += 1 - all_ious.ciou;
-
-                        int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
-                        avg_obj += l.output[obj_index];
-                        l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
-
-                        int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
-                        delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
-
-                        ++count;
-                        ++class_count;
-                        if (all_ious.iou > .5) recall += 1;
-                        if (all_ious.iou > .75) recall75 += 1;
-                    }
-                }
-            }
-        }
-
-        // averages the deltas obtained by the function: delta_yolo_box()_accumulate
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
-                    int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
-                    const int stride = l.w*l.h;
-
-                    averages_yolo_deltas(class_index, box_index, stride, l.classes, l.delta);
-                }
-            }
-        }
-    }
-
-    if (count == 0) count = 1;
-    if (class_count == 0) class_count = 1;
-
-    //*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    //printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f,  count: %d\n", state.index, avg_iou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count);
-
-    int stride = l.w*l.h;
-    float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float));
-    memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float));
-    for (b = 0; b < l.batch; ++b) {
-        for (j = 0; j < l.h; ++j) {
-            for (i = 0; i < l.w; ++i) {
-                for (n = 0; n < l.n; ++n) {
-                    int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
-                    no_iou_loss_delta[index + 0 * stride] = 0;
-                    no_iou_loss_delta[index + 1 * stride] = 0;
-                    no_iou_loss_delta[index + 2 * stride] = 0;
-                    no_iou_loss_delta[index + 3 * stride] = 0;
-                }
-            }
-        }
-    }
-    float classification_loss = l.cls_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2);
-    free(no_iou_loss_delta);
-    float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    float iou_loss = loss - classification_loss;
-
-    float avg_iou_loss = 0;
-    // gIOU loss + MSE (objectness) loss
-    if (l.iou_loss == MSE) {
-        *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
-    }
-    else {
-        // Always compute classification loss both for iou + cls loss and for logging with mse loss
-        // TODO: remove IOU loss fields before computing MSE on class
-        //   probably split into two arrays
-        if (l.iou_loss == GIOU) {
-            avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0;
-        }
-        else {
-            avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0;
-        }
-        *(l.cost) = avg_iou_loss + classification_loss;
-    }
-
-    loss /= l.batch;
-    classification_loss /= l.batch;
-    iou_loss /= l.batch;
-
-    fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, cls: %.2f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n",
-        (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.cls_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count,
-        classification_loss, iou_loss, loss);
-}
-
-void backward_yolo_layer(const layer l, network_state state)
-{
-   axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
-}
-
-// Converts output of the network to detection boxes
-// w,h: image width,height
-// netw,neth: network width,height
-// relative: 1 (all callers seems to pass TRUE)
-void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
-{
-    int i;
-    // network height (or width)
-    int new_w = 0;
-    // network height (or width)
-    int new_h = 0;
-    // Compute scale given image w,h vs network w,h
-    // I think this "rotates" the image to match network to input image w/h ratio
-    // new_h and new_w are really just network width and height
-    if (letter) {
-        if (((float)netw / w) < ((float)neth / h)) {
-            new_w = netw;
-            new_h = (h * netw) / w;
-        }
-        else {
-            new_h = neth;
-            new_w = (w * neth) / h;
-        }
-    }
-    else {
-        new_w = netw;
-        new_h = neth;
-    }
-    // difference between network width and "rotated" width
-    float deltaw = netw - new_w;
-    // difference between network height and "rotated" height
-    float deltah = neth - new_h;
-    // ratio between rotated network width and network width
-    float ratiow = (float)new_w / netw;
-    // ratio between rotated network width and network width
-    float ratioh = (float)new_h / neth;
-    for (i = 0; i < n; ++i) {
-
-        box b = dets[i].bbox;
-        // x = ( x - (deltaw/2)/netw ) / ratiow;
-        //   x - [(1/2 the difference of the network width and rotated width) / (network width)]
-        b.x = (b.x - deltaw / 2. / netw) / ratiow;
-        b.y = (b.y - deltah / 2. / neth) / ratioh;
-        // scale to match rotation of incoming image
-        b.w *= 1 / ratiow;
-        b.h *= 1 / ratioh;
-
-        // relative seems to always be == 1, I don't think we hit this condition, ever.
-        if (!relative) {
-            b.x *= w;
-            b.w *= w;
-            b.y *= h;
-            b.h *= h;
-        }
-
-        dets[i].bbox = b;
-    }
-}
-
-/*
-void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
-{
-    int i;
-    int new_w=0;
-    int new_h=0;
-    if (letter) {
-        if (((float)netw / w) < ((float)neth / h)) {
-            new_w = netw;
-            new_h = (h * netw) / w;
-        }
-        else {
-            new_h = neth;
-            new_w = (w * neth) / h;
-        }
-    }
-    else {
-        new_w = netw;
-        new_h = neth;
-    }
-    for (i = 0; i < n; ++i){
-        box b = dets[i].bbox;
-        b.x =  (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
-        b.y =  (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
-        b.w *= (float)netw/new_w;
-        b.h *= (float)neth/new_h;
-        if(!relative){
-            b.x *= w;
-            b.w *= w;
-            b.y *= h;
-            b.h *= h;
-        }
-        dets[i].bbox = b;
-    }
-}
-*/
-
-int yolo_num_detections(layer l, float thresh)
-{
-    int i, n;
-    int count = 0;
-    for(n = 0; n < l.n; ++n){
-        for (i = 0; i < l.w*l.h; ++i) {
-            int obj_index  = entry_index(l, 0, n*l.w*l.h + i, 4);
-            if(l.output[obj_index] > thresh){
-                ++count;
-            }
-        }
-    }
-    return count;
-}
-
-int yolo_num_detections_batch(layer l, float thresh, int batch)
-{
-    int i, n;
-    int count = 0;
-    for (i = 0; i < l.w*l.h; ++i){
-        for(n = 0; n < l.n; ++n){
-            int obj_index  = entry_index(l, batch, n*l.w*l.h + i, 4);
-            if(l.output[obj_index] > thresh){
-                ++count;
-            }
-        }
-    }
-    return count;
-}
-
-void avg_flipped_yolo(layer l)
-{
-    int i,j,n,z;
-    float *flip = l.output + l.outputs;
-    for (j = 0; j < l.h; ++j) {
-        for (i = 0; i < l.w/2; ++i) {
-            for (n = 0; n < l.n; ++n) {
-                for(z = 0; z < l.classes + 4 + 1; ++z){
-                    int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
-                    int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
-                    float swap = flip[i1];
-                    flip[i1] = flip[i2];
-                    flip[i2] = swap;
-                    if(z == 0){
-                        flip[i1] = -flip[i1];
-                        flip[i2] = -flip[i2];
-                    }
-                }
-            }
-        }
-    }
-    for(i = 0; i < l.outputs; ++i){
-        l.output[i] = (l.output[i] + flip[i])/2.;
-    }
-}
-
-int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter)
-{
-    //printf("\n l.batch = %d, l.w = %d, l.h = %d, l.n = %d \n", l.batch, l.w, l.h, l.n);
-    int i,j,n;
-    float *predictions = l.output;
-    // This snippet below is not necessary
-    // Need to comment it in order to batch processing >= 2 images
-    //if (l.batch == 2) avg_flipped_yolo(l);
-    int count = 0;
-    for (i = 0; i < l.w*l.h; ++i){
-        int row = i / l.w;
-        int col = i % l.w;
-        for(n = 0; n < l.n; ++n){
-            int obj_index  = entry_index(l, 0, n*l.w*l.h + i, 4);
-            float objectness = predictions[obj_index];
-            //if(objectness <= thresh) continue;    // incorrect behavior for Nan values
-            if (objectness > thresh) {
-                //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n);
-                int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
-                dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h);
-                dets[count].objectness = objectness;
-                dets[count].classes = l.classes;
-                for (j = 0; j < l.classes; ++j) {
-                    int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j);
-                    float prob = objectness*predictions[class_index];
-                    dets[count].prob[j] = (prob > thresh) ? prob : 0;
-                }
-                ++count;
-            }
-        }
-    }
-    correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
-    return count;
-}
-
-int get_yolo_detections_batch(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter, int batch)
-{
-    int i,j,n;
-    float *predictions = l.output;
-    //if (l.batch == 2) avg_flipped_yolo(l);
-    int count = 0;
-    for (i = 0; i < l.w*l.h; ++i){
-        int row = i / l.w;
-        int col = i % l.w;
-        for(n = 0; n < l.n; ++n){
-            int obj_index  = entry_index(l, batch, n*l.w*l.h + i, 4);
-            float objectness = predictions[obj_index];
-            //if(objectness <= thresh) continue;    // incorrect behavior for Nan values
-            if (objectness > thresh) {
-                //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n);
-                int box_index = entry_index(l, batch, n*l.w*l.h + i, 0);
-                dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h);
-                dets[count].objectness = objectness;
-                dets[count].classes = l.classes;
-                for (j = 0; j < l.classes; ++j) {
-                    int class_index = entry_index(l, batch, n*l.w*l.h + i, 4 + 1 + j);
-                    float prob = objectness*predictions[class_index];
-                    dets[count].prob[j] = (prob > thresh) ? prob : 0;
-                }
-                ++count;
-            }
-        }
-    }
-    correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
-    return count;
-}
-
-#ifdef GPU
-
-void forward_yolo_layer_gpu(const layer l, network_state state)
-{
-    //copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
-    simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu);
-    int b, n;
-    for (b = 0; b < l.batch; ++b){
-        for(n = 0; n < l.n; ++n){
-            int index = entry_index(l, b, n*l.w*l.h, 0);
-            // y = 1./(1. + exp(-x))
-            // x = ln(y/(1-y))  // ln - natural logarithm (base = e)
-            // if(y->1) x -> inf
-            // if(y->0) x -> -inf
-            activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC);    // x,y
-            if (l.scale_x_y != 1) scal_add_ongpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1);      // scale x,y
-            index = entry_index(l, b, n*l.w*l.h, 4);
-            activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); // classes and objectness
-        }
-    }
-    if(!state.train || l.onlyforward){
-        //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
-        if (l.mean_alpha && l.output_avg_gpu) mean_array_gpu(l.output_gpu, l.batch*l.outputs, l.mean_alpha, l.output_avg_gpu);
-        cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs);
-        CHECK_CUDA(cudaPeekAtLastError());
-        return;
-    }
-
-    float *in_cpu = (float *)xcalloc(l.batch*l.inputs, sizeof(float));
-    cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
-    memcpy(in_cpu, l.output, l.batch*l.outputs*sizeof(float));
-    float *truth_cpu = 0;
-    if (state.truth) {
-        int num_truth = l.batch*l.truths;
-        truth_cpu = (float *)xcalloc(num_truth, sizeof(float));
-        cuda_pull_array(state.truth, truth_cpu, num_truth);
-    }
-    network_state cpu_state = state;
-    cpu_state.net = state.net;
-    cpu_state.index = state.index;
-    cpu_state.train = state.train;
-    cpu_state.truth = truth_cpu;
-    cpu_state.input = in_cpu;
-    forward_yolo_layer(l, cpu_state);
-    //forward_yolo_layer(l, state);
-    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
-    free(in_cpu);
-    if (cpu_state.truth) free(cpu_state.truth);
-}
-
-void backward_yolo_layer_gpu(const layer l, network_state state)
-{
-    axpy_ongpu(l.batch*l.inputs, state.net.loss_scale, l.delta_gpu, 1, state.delta, 1);
-}
-#endif
+#include "yolo_layer.h"
+#include "activations.h"
+#include "blas.h"
+#include "box.h"
+#include "dark_cuda.h"
+#include "utils.h"
+
+#include <math.h>
+#include <stdio.h>
+#include <assert.h>
+#include <string.h>
+#include <stdlib.h>
+
+extern int check_mistakes;
+
+layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
+{
+    int i;
+    layer l = { (LAYER_TYPE)0 };
+    l.type = YOLO;
+
+    l.n = n;
+    l.total = total;
+    l.batch = batch;
+    l.h = h;
+    l.w = w;
+    l.c = n*(classes + 4 + 1);
+    l.out_w = l.w;
+    l.out_h = l.h;
+    l.out_c = l.c;
+    l.classes = classes;
+    l.cost = (float*)xcalloc(1, sizeof(float));
+    l.biases = (float*)xcalloc(total * 2, sizeof(float));
+    if(mask) l.mask = mask;
+    else{
+        l.mask = (int*)xcalloc(n, sizeof(int));
+        for(i = 0; i < n; ++i){
+            l.mask[i] = i;
+        }
+    }
+    l.bias_updates = (float*)xcalloc(n * 2, sizeof(float));
+    l.outputs = h*w*n*(classes + 4 + 1);
+    l.inputs = l.outputs;
+    l.max_boxes = max_boxes;
+    l.truth_size = 4 + 2;
+    l.truths = l.max_boxes*l.truth_size;    // 90*(4 + 1);
+    l.labels = (int*)xcalloc(batch * l.w*l.h*l.n, sizeof(int));
+    for (i = 0; i < batch * l.w*l.h*l.n; ++i) l.labels[i] = -1;
+    l.class_ids = (int*)xcalloc(batch * l.w*l.h*l.n, sizeof(int));
+    for (i = 0; i < batch * l.w*l.h*l.n; ++i) l.class_ids[i] = -1;
+
+    l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
+    l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
+    for(i = 0; i < total*2; ++i){
+        l.biases[i] = .5;
+    }
+
+    l.forward = forward_yolo_layer;
+    l.backward = backward_yolo_layer;
+#ifdef GPU
+    l.forward_gpu = forward_yolo_layer_gpu;
+    l.backward_gpu = backward_yolo_layer_gpu;
+    l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.output_avg_gpu = cuda_make_array(l.output, batch*l.outputs);
+    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
+
+    free(l.output);
+    if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
+    else {
+        cudaGetLastError(); // reset CUDA-error
+        l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
+    }
+
+    free(l.delta);
+    if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
+    else {
+        cudaGetLastError(); // reset CUDA-error
+        l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
+    }
+#endif
+
+    fprintf(stderr, "yolo\n");
+    srand(time(0));
+
+    return l;
+}
+
+void resize_yolo_layer(layer *l, int w, int h)
+{
+    l->w = w;
+    l->h = h;
+
+    l->outputs = h*w*l->n*(l->classes + 4 + 1);
+    l->inputs = l->outputs;
+
+    if (l->embedding_output) l->embedding_output = (float*)xrealloc(l->output, l->batch * l->embedding_size * l->n * l->h * l->w * sizeof(float));
+    if (l->labels) l->labels = (int*)xrealloc(l->labels, l->batch * l->n * l->h * l->w * sizeof(int));
+    if (l->class_ids) l->class_ids = (int*)xrealloc(l->class_ids, l->batch * l->n * l->h * l->w * sizeof(int));
+
+    if (!l->output_pinned) l->output = (float*)xrealloc(l->output, l->batch*l->outputs * sizeof(float));
+    if (!l->delta_pinned) l->delta = (float*)xrealloc(l->delta, l->batch*l->outputs*sizeof(float));
+
+#ifdef GPU
+    if (l->output_pinned) {
+        CHECK_CUDA(cudaFreeHost(l->output));
+        if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
+            cudaGetLastError(); // reset CUDA-error
+            l->output = (float*)xcalloc(l->batch * l->outputs, sizeof(float));
+            l->output_pinned = 0;
+        }
+    }
+
+    if (l->delta_pinned) {
+        CHECK_CUDA(cudaFreeHost(l->delta));
+        if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
+            cudaGetLastError(); // reset CUDA-error
+            l->delta = (float*)xcalloc(l->batch * l->outputs, sizeof(float));
+            l->delta_pinned = 0;
+        }
+    }
+
+    cuda_free(l->delta_gpu);
+    cuda_free(l->output_gpu);
+    cuda_free(l->output_avg_gpu);
+
+    l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
+    l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
+    l->output_avg_gpu = cuda_make_array(l->output, l->batch*l->outputs);
+#endif
+}
+
+box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride, int new_coords)
+{
+    box b;
+    // ln - natural logarithm (base = e)
+    // x` = t.x * lw - i;   // x = ln(x`/(1-x`))   // x - output of previous conv-layer
+    // y` = t.y * lh - i;   // y = ln(y`/(1-y`))   // y - output of previous conv-layer
+    // w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer
+    // h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer
+    if (new_coords) {
+        b.x = (i + x[index + 0 * stride]) / lw;
+        b.y = (j + x[index + 1 * stride]) / lh;
+        b.w = x[index + 2 * stride] * x[index + 2 * stride] * 4 * biases[2 * n] / w;
+        b.h = x[index + 3 * stride] * x[index + 3 * stride] * 4 * biases[2 * n + 1] / h;
+    }
+    else {
+        b.x = (i + x[index + 0 * stride]) / lw;
+        b.y = (j + x[index + 1 * stride]) / lh;
+        b.w = exp(x[index + 2 * stride]) * biases[2 * n] / w;
+        b.h = exp(x[index + 3 * stride]) * biases[2 * n + 1] / h;
+    }
+    return b;
+}
+
+static inline float fix_nan_inf(float val)
+{
+    if (isnan(val) || isinf(val)) val = 0;
+    return val;
+}
+
+static inline float clip_value(float val, const float max_val)
+{
+    if (val > max_val) {
+        //printf("\n val = %f > max_val = %f \n", val, max_val);
+        val = max_val;
+    }
+    else if (val < -max_val) {
+        //printf("\n val = %f < -max_val = %f \n", val, -max_val);
+        val = -max_val;
+    }
+    return val;
+}
+
+ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, int accumulate, float max_delta, int *rewritten_bbox, int new_coords)
+{
+    if (delta[index + 0 * stride] || delta[index + 1 * stride] || delta[index + 2 * stride] || delta[index + 3 * stride]) {
+        (*rewritten_bbox)++;
+    }
+
+    ious all_ious = { 0 };
+    // i - step in layer width
+    // j - step in layer height
+    //  Returns a box in absolute coordinates
+    box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride, new_coords);
+    all_ious.iou = box_iou(pred, truth);
+    all_ious.giou = box_giou(pred, truth);
+    all_ious.diou = box_diou(pred, truth);
+    all_ious.ciou = box_ciou(pred, truth);
+    // avoid nan in dx_box_iou
+    if (pred.w == 0) { pred.w = 1.0; }
+    if (pred.h == 0) { pred.h = 1.0; }
+    if (iou_loss == MSE)    // old loss
+    {
+        float tx = (truth.x*lw - i);
+        float ty = (truth.y*lh - j);
+        float tw = log(truth.w*w / biases[2 * n]);
+        float th = log(truth.h*h / biases[2 * n + 1]);
+
+        if (new_coords) {
+            //tx = (truth.x*lw - i + 0.5) / 2;
+            //ty = (truth.y*lh - j + 0.5) / 2;
+            tw = sqrt(truth.w*w / (4 * biases[2 * n]));
+            th = sqrt(truth.h*h / (4 * biases[2 * n + 1]));
+        }
+
+        //printf(" tx = %f, ty = %f, tw = %f, th = %f \n", tx, ty, tw, th);
+        //printf(" x = %f, y = %f, w = %f, h = %f \n", x[index + 0 * stride], x[index + 1 * stride], x[index + 2 * stride], x[index + 3 * stride]);
+
+        // accumulate delta
+        delta[index + 0 * stride] += scale * (tx - x[index + 0 * stride]) * iou_normalizer;
+        delta[index + 1 * stride] += scale * (ty - x[index + 1 * stride]) * iou_normalizer;
+        delta[index + 2 * stride] += scale * (tw - x[index + 2 * stride]) * iou_normalizer;
+        delta[index + 3 * stride] += scale * (th - x[index + 3 * stride]) * iou_normalizer;
+    }
+    else {
+        // https://github.com/generalized-iou/g-darknet
+        // https://arxiv.org/abs/1902.09630v2
+        // https://giou.stanford.edu/
+        all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss);
+
+        // jacobian^t (transpose)
+        //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr);
+        //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db);
+        //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr));
+        //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db));
+
+        // jacobian^t (transpose)
+        float dx = all_ious.dx_iou.dt;
+        float dy = all_ious.dx_iou.db;
+        float dw = all_ious.dx_iou.dl;
+        float dh = all_ious.dx_iou.dr;
+
+
+        // predict exponential, apply gradient of e^delta_t ONLY for w,h
+        if (new_coords) {
+            //dw *= 8 * x[index + 2 * stride];
+            //dh *= 8 * x[index + 3 * stride];
+            //dw *= 8 * x[index + 2 * stride] * biases[2 * n] / w;
+            //dh *= 8 * x[index + 3 * stride] * biases[2 * n + 1] / h;
+
+            //float grad_w = 8 * exp(-x[index + 2 * stride]) / pow(exp(-x[index + 2 * stride]) + 1, 3);
+            //float grad_h = 8 * exp(-x[index + 3 * stride]) / pow(exp(-x[index + 3 * stride]) + 1, 3);
+            //dw *= grad_w;
+            //dh *= grad_h;
+        }
+        else {
+            dw *= exp(x[index + 2 * stride]);
+            dh *= exp(x[index + 3 * stride]);
+        }
+
+
+        //dw *= exp(x[index + 2 * stride]);
+        //dh *= exp(x[index + 3 * stride]);
+
+        // normalize iou weight
+        dx *= iou_normalizer;
+        dy *= iou_normalizer;
+        dw *= iou_normalizer;
+        dh *= iou_normalizer;
+
+
+        dx = fix_nan_inf(dx);
+        dy = fix_nan_inf(dy);
+        dw = fix_nan_inf(dw);
+        dh = fix_nan_inf(dh);
+
+        if (max_delta != FLT_MAX) {
+            dx = clip_value(dx, max_delta);
+            dy = clip_value(dy, max_delta);
+            dw = clip_value(dw, max_delta);
+            dh = clip_value(dh, max_delta);
+        }
+
+
+        if (!accumulate) {
+            delta[index + 0 * stride] = 0;
+            delta[index + 1 * stride] = 0;
+            delta[index + 2 * stride] = 0;
+            delta[index + 3 * stride] = 0;
+        }
+
+        // accumulate delta
+        delta[index + 0 * stride] += dx;
+        delta[index + 1 * stride] += dy;
+        delta[index + 2 * stride] += dw;
+        delta[index + 3 * stride] += dh;
+    }
+
+    return all_ious;
+}
+
+void averages_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta)
+{
+
+    int classes_in_one_box = 0;
+    int c;
+    for (c = 0; c < classes; ++c) {
+        if (delta[class_index + stride*c] > 0) classes_in_one_box++;
+    }
+
+    if (classes_in_one_box > 0) {
+        delta[box_index + 0 * stride] /= classes_in_one_box;
+        delta[box_index + 1 * stride] /= classes_in_one_box;
+        delta[box_index + 2 * stride] /= classes_in_one_box;
+        delta[box_index + 3 * stride] /= classes_in_one_box;
+    }
+}
+
+void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss, float label_smooth_eps, float *classes_multipliers, float cls_normalizer)
+{
+    int n;
+    if (delta[index + stride*class_id]){
+        float y_true = 1;
+        if(label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
+        float result_delta = y_true - output[index + stride*class_id];
+        if(!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*class_id] = result_delta;
+        //delta[index + stride*class_id] = 1 - output[index + stride*class_id];
+
+        if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id];
+        if(avg_cat) *avg_cat += output[index + stride*class_id];
+        return;
+    }
+    // Focal loss
+    if (focal_loss) {
+        // Focal Loss
+        float alpha = 0.5;    // 0.25 or 0.5
+        //float gamma = 2;    // hardcoded in many places of the grad-formula
+
+        int ti = index + stride*class_id;
+        float pt = output[ti] + 0.000000000000001F;
+        // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
+        float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1);    // http://blog.csdn.net/linmingan/article/details/77885832
+        //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1);    // https://github.com/unsky/focal-loss
+
+        for (n = 0; n < classes; ++n) {
+            delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]);
+
+            delta[index + stride*n] *= alpha*grad;
+
+            if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
+        }
+    }
+    else {
+        // default
+        for (n = 0; n < classes; ++n) {
+            float y_true = ((n == class_id) ? 1 : 0);
+            if (label_smooth_eps) y_true = y_true *  (1 - label_smooth_eps) + 0.5*label_smooth_eps;
+            float result_delta = y_true - output[index + stride*n];
+            if (!isnan(result_delta) && !isinf(result_delta)) delta[index + stride*n] = result_delta;
+
+            if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id] * cls_normalizer;
+            if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
+        }
+    }
+}
+
+int compare_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh)
+{
+    int j;
+    for (j = 0; j < classes; ++j) {
+        //float prob = objectness * output[class_index + stride*j];
+        float prob = output[class_index + stride*j];
+        if (prob > conf_thresh) {
+            return 1;
+        }
+    }
+    return 0;
+}
+
+static int entry_index(layer l, int batch, int location, int entry)
+{
+    int n =   location / (l.w*l.h);
+    int loc = location % (l.w*l.h);
+    return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc;
+}
+
+typedef struct train_yolo_args {
+    layer l;
+    network_state state;
+    int b;
+
+    float tot_iou;
+    float tot_giou_loss;
+    float tot_iou_loss;
+    int count;
+    int class_count;
+} train_yolo_args;
+
+void *process_batch(void* ptr)
+{
+    {
+        train_yolo_args *args = (train_yolo_args*)ptr;
+        const layer l = args->l;
+        network_state state = args->state;
+        int b = args->b;
+
+        int i, j, t, n;
+
+        //printf(" b = %d \n", b, b);
+
+        //float tot_iou = 0;
+        float tot_giou = 0;
+        float tot_diou = 0;
+        float tot_ciou = 0;
+        //float tot_iou_loss = 0;
+        //float tot_giou_loss = 0;
+        float tot_diou_loss = 0;
+        float tot_ciou_loss = 0;
+        float recall = 0;
+        float recall75 = 0;
+        float avg_cat = 0;
+        float avg_obj = 0;
+        float avg_anyobj = 0;
+        //int count = 0;
+        //int class_count = 0;
+
+        for (j = 0; j < l.h; ++j) {
+            for (i = 0; i < l.w; ++i) {
+                for (n = 0; n < l.n; ++n) {
+                    const int class_index = entry_index(l, b, n * l.w * l.h + j * l.w + i, 4 + 1);
+                    const int obj_index = entry_index(l, b, n * l.w * l.h + j * l.w + i, 4);
+                    const int box_index = entry_index(l, b, n * l.w * l.h + j * l.w + i, 0);
+                    const int stride = l.w * l.h;
+                    box pred = get_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w * l.h, l.new_coords);
+                    float best_match_iou = 0;
+                    int best_match_t = 0;
+                    float best_iou = 0;
+                    int best_t = 0;
+                    for (t = 0; t < l.max_boxes; ++t) {
+                        box truth = float_to_box_stride(state.truth + t * l.truth_size + b * l.truths, 1);
+                        if (!truth.x) break;  // continue;
+                        int class_id = state.truth[t * l.truth_size + b * l.truths + 4];
+                        if (class_id >= l.classes || class_id < 0) {
+                            printf("\n Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1);
+                            printf("\n truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id);
+                            if (check_mistakes) getchar();
+                            continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value
+                        }
+
+                        float objectness = l.output[obj_index];
+                        if (isnan(objectness) || isinf(objectness)) l.output[obj_index] = 0;
+                        int class_id_match = compare_yolo_class(l.output, l.classes, class_index, l.w * l.h, objectness, class_id, 0.25f);
+
+                        float iou = box_iou(pred, truth);
+                        if (iou > best_match_iou && class_id_match == 1) {
+                            best_match_iou = iou;
+                            best_match_t = t;
+                        }
+                        if (iou > best_iou) {
+                            best_iou = iou;
+                            best_t = t;
+                        }
+                    }
+
+                    avg_anyobj += l.output[obj_index];
+                    l.delta[obj_index] = l.obj_normalizer * (0 - l.output[obj_index]);
+                    if (best_match_iou > l.ignore_thresh) {
+                        if (l.objectness_smooth) {
+                            const float delta_obj = l.obj_normalizer * (best_match_iou - l.output[obj_index]);
+                            if (delta_obj > l.delta[obj_index]) l.delta[obj_index] = delta_obj;
+
+                        }
+                        else l.delta[obj_index] = 0;
+                    }
+                    else if (state.net.adversarial) {
+                        int stride = l.w * l.h;
+                        float scale = pred.w * pred.h;
+                        if (scale > 0) scale = sqrt(scale);
+                        l.delta[obj_index] = scale * l.obj_normalizer * (0 - l.output[obj_index]);
+                        int cl_id;
+                        int found_object = 0;
+                        for (cl_id = 0; cl_id < l.classes; ++cl_id) {
+                            if (l.output[class_index + stride * cl_id] * l.output[obj_index] > 0.25) {
+                                l.delta[class_index + stride * cl_id] = scale * (0 - l.output[class_index + stride * cl_id]);
+                                found_object = 1;
+                            }
+                        }
+                        if (found_object) {
+                            // don't use this loop for adversarial attack drawing
+                            for (cl_id = 0; cl_id < l.classes; ++cl_id)
+                                if (l.output[class_index + stride * cl_id] * l.output[obj_index] < 0.25)
+                                    l.delta[class_index + stride * cl_id] = scale * (1 - l.output[class_index + stride * cl_id]);
+
+                            l.delta[box_index + 0 * stride] += scale * (0 - l.output[box_index + 0 * stride]);
+                            l.delta[box_index + 1 * stride] += scale * (0 - l.output[box_index + 1 * stride]);
+                            l.delta[box_index + 2 * stride] += scale * (0 - l.output[box_index + 2 * stride]);
+                            l.delta[box_index + 3 * stride] += scale * (0 - l.output[box_index + 3 * stride]);
+                        }
+                    }
+                    if (best_iou > l.truth_thresh) {
+                        const float iou_multiplier = best_iou * best_iou;// (best_iou - l.truth_thresh) / (1.0 - l.truth_thresh);
+                        if (l.objectness_smooth) l.delta[obj_index] = l.obj_normalizer * (iou_multiplier - l.output[obj_index]);
+                        else l.delta[obj_index] = l.obj_normalizer * (1 - l.output[obj_index]);
+                        //l.delta[obj_index] = l.obj_normalizer * (1 - l.output[obj_index]);
+
+                        int class_id = state.truth[best_t * l.truth_size + b * l.truths + 4];
+                        if (l.map) class_id = l.map[class_id];
+                        delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, 0, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer);
+                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
+                        if (l.objectness_smooth) l.delta[class_index + stride * class_id] = class_multiplier * (iou_multiplier - l.output[class_index + stride * class_id]);
+                        box truth = float_to_box_stride(state.truth + best_t * l.truth_size + b * l.truths, 1);
+                        delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords);
+                        (*state.net.total_bbox)++;
+                    }
+                }
+            }
+        }
+        for (t = 0; t < l.max_boxes; ++t) {
+            box truth = float_to_box_stride(state.truth + t * l.truth_size + b * l.truths, 1);
+            if (!truth.x) break;  // continue;
+            if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) {
+                char buff[256];
+                printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h);
+                sprintf(buff, "echo \"Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f\" >> bad_label.list",
+                    truth.x, truth.y, truth.w, truth.h);
+                system(buff);
+            }
+            int class_id = state.truth[t * l.truth_size + b * l.truths + 4];
+            if (class_id >= l.classes || class_id < 0) continue; // if label contains class_id more than number of classes in the cfg-file and class_id check garbage value
+
+            float best_iou = 0;
+            int best_n = 0;
+            i = (truth.x * l.w);
+            j = (truth.y * l.h);
+            box truth_shift = truth;
+            truth_shift.x = truth_shift.y = 0;
+            for (n = 0; n < l.total; ++n) {
+                box pred = { 0 };
+                pred.w = l.biases[2 * n] / state.net.w;
+                pred.h = l.biases[2 * n + 1] / state.net.h;
+                float iou = box_iou(pred, truth_shift);
+                if (iou > best_iou) {
+                    best_iou = iou;
+                    best_n = n;
+                }
+            }
+
+            int mask_n = int_index(l.mask, best_n, l.n);
+            if (mask_n >= 0) {
+                int class_id = state.truth[t * l.truth_size + b * l.truths + 4];
+                if (l.map) class_id = l.map[class_id];
+
+                int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0);
+                const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
+                ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords);
+                (*state.net.total_bbox)++;
+
+                const int truth_in_index = t * l.truth_size + b * l.truths + 5;
+                const int track_id = state.truth[truth_in_index];
+                const int truth_out_index = b * l.n * l.w * l.h + mask_n * l.w * l.h + j * l.w + i;
+                l.labels[truth_out_index] = track_id;
+                l.class_ids[truth_out_index] = class_id;
+                //printf(" track_id = %d, t = %d, b = %d, truth_in_index = %d, truth_out_index = %d \n", track_id, t, b, truth_in_index, truth_out_index);
+
+                // range is 0 <= 1
+                args->tot_iou += all_ious.iou;
+                args->tot_iou_loss += 1 - all_ious.iou;
+                // range is -1 <= giou <= 1
+                tot_giou += all_ious.giou;
+                args->tot_giou_loss += 1 - all_ious.giou;
+
+                tot_diou += all_ious.diou;
+                tot_diou_loss += 1 - all_ious.diou;
+
+                tot_ciou += all_ious.ciou;
+                tot_ciou_loss += 1 - all_ious.ciou;
+
+                int obj_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4);
+                avg_obj += l.output[obj_index];
+                if (l.objectness_smooth) {
+                    float delta_obj = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]);
+                    if (l.delta[obj_index] == 0) l.delta[obj_index] = delta_obj;
+                }
+                else l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]);
+
+                int class_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4 + 1);
+                delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer);
+
+                //printf(" label: class_id = %d, truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", class_id, truth.x, truth.y, truth.w, truth.h);
+                //printf(" mask_n = %d, l.output[obj_index] = %f, l.output[class_index + class_id] = %f \n\n", mask_n, l.output[obj_index], l.output[class_index + class_id]);
+
+                ++(args->count);
+                ++(args->class_count);
+                if (all_ious.iou > .5) recall += 1;
+                if (all_ious.iou > .75) recall75 += 1;
+            }
+
+            // iou_thresh
+            for (n = 0; n < l.total; ++n) {
+                int mask_n = int_index(l.mask, n, l.n);
+                if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) {
+                    box pred = { 0 };
+                    pred.w = l.biases[2 * n] / state.net.w;
+                    pred.h = l.biases[2 * n + 1] / state.net.h;
+                    float iou = box_iou_kind(pred, truth_shift, l.iou_thresh_kind); // IOU, GIOU, MSE, DIOU, CIOU
+                    // iou, n
+
+                    if (iou > l.iou_thresh) {
+                        int class_id = state.truth[t * l.truth_size + b * l.truths + 4];
+                        if (l.map) class_id = l.map[class_id];
+
+                        int box_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 0);
+                        const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
+                        ious all_ious = delta_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w * truth.h), l.w * l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1, l.max_delta, state.net.rewritten_bbox, l.new_coords);
+                        (*state.net.total_bbox)++;
+
+                        // range is 0 <= 1
+                        args->tot_iou += all_ious.iou;
+                        args->tot_iou_loss += 1 - all_ious.iou;
+                        // range is -1 <= giou <= 1
+                        tot_giou += all_ious.giou;
+                        args->tot_giou_loss += 1 - all_ious.giou;
+
+                        tot_diou += all_ious.diou;
+                        tot_diou_loss += 1 - all_ious.diou;
+
+                        tot_ciou += all_ious.ciou;
+                        tot_ciou_loss += 1 - all_ious.ciou;
+
+                        int obj_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4);
+                        avg_obj += l.output[obj_index];
+                        if (l.objectness_smooth) {
+                            float delta_obj = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]);
+                            if (l.delta[obj_index] == 0) l.delta[obj_index] = delta_obj;
+                        }
+                        else l.delta[obj_index] = class_multiplier * l.obj_normalizer * (1 - l.output[obj_index]);
+
+                        int class_index = entry_index(l, b, mask_n * l.w * l.h + j * l.w + i, 4 + 1);
+                        delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w * l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers, l.cls_normalizer);
+
+                        ++(args->count);
+                        ++(args->class_count);
+                        if (all_ious.iou > .5) recall += 1;
+                        if (all_ious.iou > .75) recall75 += 1;
+                    }
+                }
+            }
+        }
+
+        if (l.iou_thresh < 1.0f) {
+            // averages the deltas obtained by the function: delta_yolo_box()_accumulate
+            for (j = 0; j < l.h; ++j) {
+                for (i = 0; i < l.w; ++i) {
+                    for (n = 0; n < l.n; ++n) {
+                        int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4);
+                        int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
+                        int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
+                        const int stride = l.w*l.h;
+
+                        if (l.delta[obj_index] != 0)
+                            averages_yolo_deltas(class_index, box_index, stride, l.classes, l.delta);
+                    }
+                }
+            }
+        }
+
+    }
+
+    return 0;
+}
+
+
+
+void forward_yolo_layer(const layer l, network_state state)
+{
+    //int i, j, b, t, n;
+    memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float));
+    int b, n;
+
+#ifndef GPU
+    for (b = 0; b < l.batch; ++b) {
+        for (n = 0; n < l.n; ++n) {
+            int bbox_index = entry_index(l, b, n*l.w*l.h, 0);
+            if (l.new_coords) {
+                //activate_array(l.output + bbox_index, 4 * l.w*l.h, LOGISTIC);    // x,y,w,h
+            }
+            else {
+                activate_array(l.output + bbox_index, 2 * l.w*l.h, LOGISTIC);        // x,y,
+                int obj_index = entry_index(l, b, n*l.w*l.h, 4);
+                activate_array(l.output + obj_index, (1 + l.classes)*l.w*l.h, LOGISTIC);
+            }
+            scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + bbox_index, 1);    // scale x,y
+        }
+    }
+#endif
+
+    // delta is zeroed
+    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
+    if (!state.train) return;
+
+    int i;
+    for (i = 0; i < l.batch * l.w*l.h*l.n; ++i) l.labels[i] = -1;
+    for (i = 0; i < l.batch * l.w*l.h*l.n; ++i) l.class_ids[i] = -1;
+    //float avg_iou = 0;
+    float tot_iou = 0;
+    float tot_giou = 0;
+    float tot_diou = 0;
+    float tot_ciou = 0;
+    float tot_iou_loss = 0;
+    float tot_giou_loss = 0;
+    float tot_diou_loss = 0;
+    float tot_ciou_loss = 0;
+    float recall = 0;
+    float recall75 = 0;
+    float avg_cat = 0;
+    float avg_obj = 0;
+    float avg_anyobj = 0;
+    int count = 0;
+    int class_count = 0;
+    *(l.cost) = 0;
+
+
+    int num_threads = l.batch;
+    pthread_t* threads = (pthread_t*)calloc(num_threads, sizeof(pthread_t));
+
+    struct train_yolo_args* yolo_args = (train_yolo_args*)xcalloc(l.batch, sizeof(struct train_yolo_args));
+
+    for (b = 0; b < l.batch; b++)
+    {
+        yolo_args[b].l = l;
+        yolo_args[b].state = state;
+        yolo_args[b].b = b;
+
+        yolo_args[b].tot_iou = 0;
+        yolo_args[b].tot_iou_loss = 0;
+        yolo_args[b].tot_giou_loss = 0;
+        yolo_args[b].count = 0;
+        yolo_args[b].class_count = 0;
+
+        if (pthread_create(&threads[b], 0, process_batch, &(yolo_args[b]))) error("Thread creation failed");
+    }
+
+    for (b = 0; b < l.batch; b++)
+    {
+        pthread_join(threads[b], 0);
+
+        tot_iou += yolo_args[b].tot_iou;
+        tot_iou_loss += yolo_args[b].tot_iou_loss;
+        tot_giou_loss += yolo_args[b].tot_giou_loss;
+        count += yolo_args[b].count;
+        class_count += yolo_args[b].class_count;
+    }
+
+    free(yolo_args);
+    free(threads);
+
+    // Search for an equidistant point from the distant boundaries of the local minimum
+    int iteration_num = get_current_iteration(state.net);
+    const int start_point = state.net.max_batches * 3 / 4;
+    //printf(" equidistant_point ep = %d, it = %d \n", state.net.equidistant_point, iteration_num);
+
+    if ((state.net.badlabels_rejection_percentage && start_point < iteration_num) ||
+        (state.net.num_sigmas_reject_badlabels && start_point < iteration_num) ||
+        (state.net.equidistant_point && state.net.equidistant_point < iteration_num))
+    {
+        const float progress_it = iteration_num - state.net.equidistant_point;
+        const float progress = progress_it / (state.net.max_batches - state.net.equidistant_point);
+        float ep_loss_threshold = (*state.net.delta_rolling_avg) * progress * 1.4;
+
+        float cur_max = 0;
+        float cur_avg = 0;
+        float counter = 0;
+        for (i = 0; i < l.batch * l.outputs; ++i) {
+
+            if (l.delta[i] != 0) {
+                counter++;
+                cur_avg += fabs(l.delta[i]);
+
+                if (cur_max < fabs(l.delta[i]))
+                    cur_max = fabs(l.delta[i]);
+            }
+        }
+
+        cur_avg = cur_avg / counter;
+
+        if (*state.net.delta_rolling_max == 0) *state.net.delta_rolling_max = cur_max;
+        *state.net.delta_rolling_max = *state.net.delta_rolling_max * 0.99 + cur_max * 0.01;
+        *state.net.delta_rolling_avg = *state.net.delta_rolling_avg * 0.99 + cur_avg * 0.01;
+
+        // reject high loss to filter bad labels
+        if (state.net.num_sigmas_reject_badlabels && start_point < iteration_num)
+        {
+            const float rolling_std = (*state.net.delta_rolling_std);
+            const float rolling_max = (*state.net.delta_rolling_max);
+            const float rolling_avg = (*state.net.delta_rolling_avg);
+            const float progress_badlabels = (float)(iteration_num - start_point) / (start_point);
+
+            float cur_std = 0;
+            float counter = 0;
+            for (i = 0; i < l.batch * l.outputs; ++i) {
+                if (l.delta[i] != 0) {
+                    counter++;
+                    cur_std += pow(l.delta[i] - rolling_avg, 2);
+                }
+            }
+            cur_std = sqrt(cur_std / counter);
+
+            *state.net.delta_rolling_std = *state.net.delta_rolling_std * 0.99 + cur_std * 0.01;
+
+            float final_badlebels_threshold = rolling_avg + rolling_std * state.net.num_sigmas_reject_badlabels;
+            float badlabels_threshold = rolling_max - progress_badlabels * fabs(rolling_max - final_badlebels_threshold);
+            badlabels_threshold = max_val_cmp(final_badlebels_threshold, badlabels_threshold);
+            for (i = 0; i < l.batch * l.outputs; ++i) {
+                if (fabs(l.delta[i]) > badlabels_threshold)
+                    l.delta[i] = 0;
+            }
+            printf(" rolling_std = %f, rolling_max = %f, rolling_avg = %f \n", rolling_std, rolling_max, rolling_avg);
+            printf(" badlabels loss_threshold = %f, start_it = %d, progress = %f \n", badlabels_threshold, start_point, progress_badlabels *100);
+
+            ep_loss_threshold = min_val_cmp(final_badlebels_threshold, rolling_avg) * progress;
+        }
+
+
+        // reject some percent of the highest deltas to filter bad labels
+        if (state.net.badlabels_rejection_percentage && start_point < iteration_num) {
+            if (*state.net.badlabels_reject_threshold == 0)
+                *state.net.badlabels_reject_threshold = *state.net.delta_rolling_max;
+
+            printf(" badlabels_reject_threshold = %f \n", *state.net.badlabels_reject_threshold);
+
+            const float num_deltas_per_anchor = (l.classes + 4 + 1);
+            float counter_reject = 0;
+            float counter_all = 0;
+            for (i = 0; i < l.batch * l.outputs; ++i) {
+                if (l.delta[i] != 0) {
+                    counter_all++;
+                    if (fabs(l.delta[i]) > (*state.net.badlabels_reject_threshold)) {
+                        counter_reject++;
+                        l.delta[i] = 0;
+                    }
+                }
+            }
+            float cur_percent = 100 * (counter_reject*num_deltas_per_anchor / counter_all);
+            if (cur_percent > state.net.badlabels_rejection_percentage) {
+                *state.net.badlabels_reject_threshold += 0.01;
+                printf(" increase!!! \n");
+            }
+            else if (*state.net.badlabels_reject_threshold > 0.01) {
+                *state.net.badlabels_reject_threshold -= 0.01;
+                printf(" decrease!!! \n");
+            }
+
+            printf(" badlabels_reject_threshold = %f, cur_percent = %f, badlabels_rejection_percentage = %f, delta_rolling_max = %f \n",
+                *state.net.badlabels_reject_threshold, cur_percent, state.net.badlabels_rejection_percentage, *state.net.delta_rolling_max);
+        }
+
+
+        // reject low loss to find equidistant point
+        if (state.net.equidistant_point && state.net.equidistant_point < iteration_num) {
+            printf(" equidistant_point loss_threshold = %f, start_it = %d, progress = %3.1f %% \n", ep_loss_threshold, state.net.equidistant_point, progress * 100);
+            for (i = 0; i < l.batch * l.outputs; ++i) {
+                if (fabs(l.delta[i]) < ep_loss_threshold)
+                    l.delta[i] = 0;
+            }
+        }
+    }
+
+    if (count == 0) count = 1;
+    if (class_count == 0) class_count = 1;
+
+    if (l.show_details == 0) {
+        float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+        *(l.cost) = loss;
+
+        loss /= l.batch;
+
+        fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, obj: %.2f, cls: %.2f) Region %d Avg (IOU: %f), count: %d, total_loss = %f \n",
+            (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, l.cls_normalizer, state.index, tot_iou / count, count, loss);
+    }
+    else {
+        // show detailed output
+
+        int stride = l.w*l.h;
+        float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float));
+        memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float));
+
+
+        int j, n;
+        for (b = 0; b < l.batch; ++b) {
+            for (j = 0; j < l.h; ++j) {
+                for (i = 0; i < l.w; ++i) {
+                    for (n = 0; n < l.n; ++n) {
+                        int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
+                        no_iou_loss_delta[index + 0 * stride] = 0;
+                        no_iou_loss_delta[index + 1 * stride] = 0;
+                        no_iou_loss_delta[index + 2 * stride] = 0;
+                        no_iou_loss_delta[index + 3 * stride] = 0;
+                    }
+                }
+            }
+        }
+
+        float classification_loss = l.obj_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2);
+        free(no_iou_loss_delta);
+        float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+        float iou_loss = loss - classification_loss;
+
+        float avg_iou_loss = 0;
+        *(l.cost) = loss;
+
+        // gIOU loss + MSE (objectness) loss
+        if (l.iou_loss == MSE) {
+            *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
+        }
+        else {
+            // Always compute classification loss both for iou + cls loss and for logging with mse loss
+            // TODO: remove IOU loss fields before computing MSE on class
+            //   probably split into two arrays
+            if (l.iou_loss == GIOU) {
+                avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0;
+            }
+            else {
+                avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0;
+            }
+            *(l.cost) = avg_iou_loss + classification_loss;
+        }
+
+
+        loss /= l.batch;
+        classification_loss /= l.batch;
+        iou_loss /= l.batch;
+
+        fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, obj: %.2f, cls: %.2f) Region %d Avg (IOU: %f), count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n",
+            (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, l.cls_normalizer, state.index, tot_iou / count, count, classification_loss, iou_loss, loss);
+
+        //fprintf(stderr, "v3 (%s loss, Normalizer: (iou: %.2f, cls: %.2f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, class_loss = %f, iou_loss = %f, total_loss = %f \n",
+        //    (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.obj_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count,
+        //    classification_loss, iou_loss, loss);
+    }
+}
+
+void backward_yolo_layer(const layer l, network_state state)
+{
+   axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
+}
+
+// Converts output of the network to detection boxes
+// w,h: image width,height
+// netw,neth: network width,height
+// relative: 1 (all callers seems to pass TRUE)
+void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
+{
+    int i;
+    // network height (or width)
+    int new_w = 0;
+    // network height (or width)
+    int new_h = 0;
+    // Compute scale given image w,h vs network w,h
+    // I think this "rotates" the image to match network to input image w/h ratio
+    // new_h and new_w are really just network width and height
+    if (letter) {
+        if (((float)netw / w) < ((float)neth / h)) {
+            new_w = netw;
+            new_h = (h * netw) / w;
+        }
+        else {
+            new_h = neth;
+            new_w = (w * neth) / h;
+        }
+    }
+    else {
+        new_w = netw;
+        new_h = neth;
+    }
+    // difference between network width and "rotated" width
+    float deltaw = netw - new_w;
+    // difference between network height and "rotated" height
+    float deltah = neth - new_h;
+    // ratio between rotated network width and network width
+    float ratiow = (float)new_w / netw;
+    // ratio between rotated network width and network width
+    float ratioh = (float)new_h / neth;
+    for (i = 0; i < n; ++i) {
+
+        box b = dets[i].bbox;
+        // x = ( x - (deltaw/2)/netw ) / ratiow;
+        //   x - [(1/2 the difference of the network width and rotated width) / (network width)]
+        b.x = (b.x - deltaw / 2. / netw) / ratiow;
+        b.y = (b.y - deltah / 2. / neth) / ratioh;
+        // scale to match rotation of incoming image
+        b.w *= 1 / ratiow;
+        b.h *= 1 / ratioh;
+
+        // relative seems to always be == 1, I don't think we hit this condition, ever.
+        if (!relative) {
+            b.x *= w;
+            b.w *= w;
+            b.y *= h;
+            b.h *= h;
+        }
+
+        dets[i].bbox = b;
+    }
+}
+
+/*
+void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
+{
+    int i;
+    int new_w=0;
+    int new_h=0;
+    if (letter) {
+        if (((float)netw / w) < ((float)neth / h)) {
+            new_w = netw;
+            new_h = (h * netw) / w;
+        }
+        else {
+            new_h = neth;
+            new_w = (w * neth) / h;
+        }
+    }
+    else {
+        new_w = netw;
+        new_h = neth;
+    }
+    for (i = 0; i < n; ++i){
+        box b = dets[i].bbox;
+        b.x =  (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
+        b.y =  (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
+        b.w *= (float)netw/new_w;
+        b.h *= (float)neth/new_h;
+        if(!relative){
+            b.x *= w;
+            b.w *= w;
+            b.y *= h;
+            b.h *= h;
+        }
+        dets[i].bbox = b;
+    }
+}
+*/
+
+int yolo_num_detections(layer l, float thresh)
+{
+    int i, n;
+    int count = 0;
+    for(n = 0; n < l.n; ++n){
+        for (i = 0; i < l.w*l.h; ++i) {
+            int obj_index  = entry_index(l, 0, n*l.w*l.h + i, 4);
+            if(l.output[obj_index] > thresh){
+                ++count;
+            }
+        }
+    }
+    return count;
+}
+
+int yolo_num_detections_batch(layer l, float thresh, int batch)
+{
+    int i, n;
+    int count = 0;
+    for (i = 0; i < l.w*l.h; ++i){
+        for(n = 0; n < l.n; ++n){
+            int obj_index  = entry_index(l, batch, n*l.w*l.h + i, 4);
+            if(l.output[obj_index] > thresh){
+                ++count;
+            }
+        }
+    }
+    return count;
+}
+
+void avg_flipped_yolo(layer l)
+{
+    int i,j,n,z;
+    float *flip = l.output + l.outputs;
+    for (j = 0; j < l.h; ++j) {
+        for (i = 0; i < l.w/2; ++i) {
+            for (n = 0; n < l.n; ++n) {
+                for(z = 0; z < l.classes + 4 + 1; ++z){
+                    int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
+                    int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
+                    float swap = flip[i1];
+                    flip[i1] = flip[i2];
+                    flip[i2] = swap;
+                    if(z == 0){
+                        flip[i1] = -flip[i1];
+                        flip[i2] = -flip[i2];
+                    }
+                }
+            }
+        }
+    }
+    for(i = 0; i < l.outputs; ++i){
+        l.output[i] = (l.output[i] + flip[i])/2.;
+    }
+}
+
+int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter)
+{
+    //printf("\n l.batch = %d, l.w = %d, l.h = %d, l.n = %d \n", l.batch, l.w, l.h, l.n);
+    int i,j,n;
+    float *predictions = l.output;
+    // This snippet below is not necessary
+    // Need to comment it in order to batch processing >= 2 images
+    //if (l.batch == 2) avg_flipped_yolo(l);
+    int count = 0;
+    for (i = 0; i < l.w*l.h; ++i){
+        int row = i / l.w;
+        int col = i % l.w;
+        for(n = 0; n < l.n; ++n){
+            int obj_index  = entry_index(l, 0, n*l.w*l.h + i, 4);
+            float objectness = predictions[obj_index];
+            //if(objectness <= thresh) continue;    // incorrect behavior for Nan values
+            if (objectness > thresh) {
+                //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n);
+                int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
+                dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.new_coords);
+                dets[count].objectness = objectness;
+                dets[count].classes = l.classes;
+                if (l.embedding_output) {
+                    get_embedding(l.embedding_output, l.w, l.h, l.n*l.embedding_size, l.embedding_size, col, row, n, 0, dets[count].embeddings);
+                }
+
+                for (j = 0; j < l.classes; ++j) {
+                    int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j);
+                    float prob = objectness*predictions[class_index];
+                    dets[count].prob[j] = (prob > thresh) ? prob : 0;
+                }
+                ++count;
+            }
+        }
+    }
+    correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
+    return count;
+}
+
+int get_yolo_detections_batch(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter, int batch)
+{
+    int i,j,n;
+    float *predictions = l.output;
+    //if (l.batch == 2) avg_flipped_yolo(l);
+    int count = 0;
+    for (i = 0; i < l.w*l.h; ++i){
+        int row = i / l.w;
+        int col = i % l.w;
+        for(n = 0; n < l.n; ++n){
+            int obj_index  = entry_index(l, batch, n*l.w*l.h + i, 4);
+            float objectness = predictions[obj_index];
+            //if(objectness <= thresh) continue;    // incorrect behavior for Nan values
+            if (objectness > thresh) {
+                //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n);
+                int box_index = entry_index(l, batch, n*l.w*l.h + i, 0);
+                dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h, l.new_coords);
+                dets[count].objectness = objectness;
+                dets[count].classes = l.classes;
+                if (l.embedding_output) {
+                    get_embedding(l.embedding_output, l.w, l.h, l.n*l.embedding_size, l.embedding_size, col, row, n, batch, dets[count].embeddings);
+                }
+
+                for (j = 0; j < l.classes; ++j) {
+                    int class_index = entry_index(l, batch, n*l.w*l.h + i, 4 + 1 + j);
+                    float prob = objectness*predictions[class_index];
+                    dets[count].prob[j] = (prob > thresh) ? prob : 0;
+                }
+                ++count;
+            }
+        }
+    }
+    correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
+    return count;
+}
+
+#ifdef GPU
+
+void forward_yolo_layer_gpu(const layer l, network_state state)
+{
+    if (l.embedding_output) {
+        layer le = state.net.layers[l.embedding_layer_id];
+        cuda_pull_array_async(le.output_gpu, l.embedding_output, le.batch*le.outputs);
+    }
+
+    //copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
+    simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu);
+    int b, n;
+    for (b = 0; b < l.batch; ++b){
+        for(n = 0; n < l.n; ++n){
+            int bbox_index = entry_index(l, b, n*l.w*l.h, 0);
+            // y = 1./(1. + exp(-x))
+            // x = ln(y/(1-y))  // ln - natural logarithm (base = e)
+            // if(y->1) x -> inf
+            // if(y->0) x -> -inf
+            if (l.new_coords) {
+                //activate_array_ongpu(l.output_gpu + bbox_index, 4 * l.w*l.h, LOGISTIC);    // x,y,w,h
+            }
+            else {
+                activate_array_ongpu(l.output_gpu + bbox_index, 2 * l.w*l.h, LOGISTIC);    // x,y
+
+                int obj_index = entry_index(l, b, n*l.w*l.h, 4);
+                activate_array_ongpu(l.output_gpu + obj_index, (1 + l.classes)*l.w*l.h, LOGISTIC); // classes and objectness
+            }
+            if (l.scale_x_y != 1) scal_add_ongpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + bbox_index, 1);      // scale x,y
+        }
+    }
+    if(!state.train || l.onlyforward){
+        //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+        if (l.mean_alpha && l.output_avg_gpu) mean_array_gpu(l.output_gpu, l.batch*l.outputs, l.mean_alpha, l.output_avg_gpu);
+        cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs);
+        CHECK_CUDA(cudaPeekAtLastError());
+        return;
+    }
+
+    float *in_cpu = (float *)xcalloc(l.batch*l.inputs, sizeof(float));
+    cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
+    memcpy(in_cpu, l.output, l.batch*l.outputs*sizeof(float));
+    float *truth_cpu = 0;
+    if (state.truth) {
+        int num_truth = l.batch*l.truths;
+        truth_cpu = (float *)xcalloc(num_truth, sizeof(float));
+        cuda_pull_array(state.truth, truth_cpu, num_truth);
+    }
+    network_state cpu_state = state;
+    cpu_state.net = state.net;
+    cpu_state.index = state.index;
+    cpu_state.train = state.train;
+    cpu_state.truth = truth_cpu;
+    cpu_state.input = in_cpu;
+    forward_yolo_layer(l, cpu_state);
+    //forward_yolo_layer(l, state);
+    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
+    free(in_cpu);
+    if (cpu_state.truth) free(cpu_state.truth);
+}
+
+void backward_yolo_layer_gpu(const layer l, network_state state)
+{
+    axpy_ongpu(l.batch*l.inputs, state.net.loss_scale * l.delta_normalizer, l.delta_gpu, 1, state.delta, 1);
+}
+#endif

--
Gitblit v1.8.0