From 524659bcad6cfda4aa07dac8aab1b6f4f5eaf835 Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期二, 06 七月 2021 14:19:57 +0800 Subject: [PATCH] m --- lib/detecter_tools/darknet/convolutional_layer.c | 3240 +++++++++++++++++++++++++++++++---------------------------- 1 files changed, 1,690 insertions(+), 1,550 deletions(-) diff --git a/lib/detecter_tools/darknet/convolutional_layer.c b/lib/detecter_tools/darknet/convolutional_layer.c index 6cb7312..1d52dd1 100644 --- a/lib/detecter_tools/darknet/convolutional_layer.c +++ b/lib/detecter_tools/darknet/convolutional_layer.c @@ -1,1550 +1,1690 @@ -#include "convolutional_layer.h" -#include "utils.h" -#include "batchnorm_layer.h" -#include "im2col.h" -#include "col2im.h" -#include "blas.h" -#include "gemm.h" -#include "box.h" -#include <stdio.h> -#include <time.h> - -#ifdef AI2 -#include "xnor_layer.h" -#endif - -#ifdef __cplusplus -#define PUT_IN_REGISTER -#else -#define PUT_IN_REGISTER register -#endif - -#ifndef AI2 -#define AI2 0 -void forward_xnor_layer(layer l, network_state state); -#endif - -void swap_binary(convolutional_layer *l) -{ - float *swap = l->weights; - l->weights = l->binary_weights; - l->binary_weights = swap; - - #ifdef GPU - swap = l->weights_gpu; - l->weights_gpu = l->binary_weights_gpu; - l->binary_weights_gpu = swap; - #endif -} - -void binarize_weights(float *weights, int n, int size, float *binary) -{ - int i, f; - for(f = 0; f < n; ++f){ - float mean = 0; - for(i = 0; i < size; ++i){ - mean += fabs(weights[f*size + i]); - } - mean = mean / size; - for(i = 0; i < size; ++i){ - binary[f*size + i] = (weights[f*size + i] > 0) ? mean: -mean; - } - } -} - -void binarize_cpu(float *input, int n, float *binary) -{ - int i; - for(i = 0; i < n; ++i){ - binary[i] = (input[i] > 0) ? 1 : -1; - } -} - -void binarize_input(float *input, int n, int size, float *binary) -{ - int i, s; - for(s = 0; s < size; ++s){ - float mean = 0; - for(i = 0; i < n; ++i){ - mean += fabs(input[i*size + s]); - } - mean = mean / n; - for(i = 0; i < n; ++i){ - binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; - } - } -} - -int convolutional_out_height(convolutional_layer l) -{ - return (l.h + 2*l.pad - l.size) / l.stride_y + 1; -} - -int convolutional_out_width(convolutional_layer l) -{ - return (l.w + 2*l.pad - l.size) / l.stride_x + 1; -} - -image get_convolutional_image(convolutional_layer l) -{ - int h,w,c; - h = convolutional_out_height(l); - w = convolutional_out_width(l); - c = l.n; - return float_to_image(w,h,c,l.output); -} - -image get_convolutional_delta(convolutional_layer l) -{ - int h,w,c; - h = convolutional_out_height(l); - w = convolutional_out_width(l); - c = l.n; - return float_to_image(w,h,c,l.delta); -} - -size_t get_workspace_size32(layer l){ -#ifdef CUDNN - if(gpu_index >= 0){ - size_t most = 0; - size_t s = 0; - CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), - l.srcTensorDesc, - l.weightDesc, - l.convDesc, - l.dstTensorDesc, - l.fw_algo, - &s)); - if (s > most) most = s; - CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), - l.srcTensorDesc, - l.ddstTensorDesc, - l.convDesc, - l.dweightDesc, - l.bf_algo, - &s)); - if (s > most && l.train) most = s; - CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), - l.weightDesc, - l.ddstTensorDesc, - l.convDesc, - l.dsrcTensorDesc, - l.bd_algo, - &s)); - if (s > most && l.train) most = s; - return most; - } - #endif - if (l.xnor) { - size_t re_packed_input_size = l.c * l.w * l.h * sizeof(float); - size_t workspace_size = (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float); - if (workspace_size < re_packed_input_size) workspace_size = re_packed_input_size; - return workspace_size; - } - return (size_t)l.out_h*l.out_w*l.size*l.size*(l.c / l.groups)*sizeof(float); -} - -size_t get_workspace_size16(layer l) { -#if defined(CUDNN) && defined(CUDNN_HALF) - if (gpu_index >= 0) { - size_t most = 0; - size_t s = 0; - CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), - l.srcTensorDesc16, - l.weightDesc16, - l.convDesc, - l.dstTensorDesc16, - l.fw_algo16, - &s)); - if (s > most) most = s; - CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), - l.srcTensorDesc16, - l.ddstTensorDesc16, - l.convDesc, - l.dweightDesc16, - l.bf_algo16, - &s)); - if (s > most && l.train) most = s; - CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), - l.weightDesc16, - l.ddstTensorDesc16, - l.convDesc, - l.dsrcTensorDesc16, - l.bd_algo16, - &s)); - if (s > most && l.train) most = s; - return most; - } -#endif - return 0; - //if (l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float); - //return (size_t)l.out_h*l.out_w*l.size*l.size*l.c * sizeof(float); -} - -size_t get_convolutional_workspace_size(layer l) { - size_t workspace_size = get_workspace_size32(l); - size_t workspace_size16 = get_workspace_size16(l); - if (workspace_size16 > workspace_size) workspace_size = workspace_size16; - return workspace_size; -} -#ifdef GPU -#ifdef CUDNN -void create_convolutional_cudnn_tensors(layer *l) -{ - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normTensorDesc)); - - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc)); - CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc)); - CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc)); - - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDescF16)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc16)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc16)); - CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc16)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc16)); - CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc16)); - CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc16)); - - CHECK_CUDNN(cudnnCreateConvolutionDescriptor(&l->convDesc)); -} - -void cudnn_convolutional_setup(layer *l, int cudnn_preference, size_t workspace_size_specify) -{ - -// CUDNN_HALF - // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): - // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100 - // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case! - - cudnnDataType_t data_type = CUDNN_DATA_FLOAT; - -#if(CUDNN_MAJOR >= 7) - // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH - // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT - // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF - // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/ - // 1. Accumulation into FP32 - // 2. Loss Scaling - required only for: activation gradients. We do not use. - // 3. FP32 Master Copy of Weights - // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops - if (l->groups < 1) l->groups = 1; - if (l->stride_x < 1) l->stride_x = 1; - if (l->stride_y < 1) l->stride_y = 1; - CHECK_CUDNN(cudnnSetConvolutionGroupCount(l->convDesc, l->groups)); - CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH)); -#if((CUDNN_MAJOR*10 + CUDNN_MINOR) >= 72) // cuDNN >= 7.2 - //CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION)); // reduces the speed of regular and group convolution -#endif -#else //if(CUDNN_MAJOR >= 7) - if (l->groups > 1) { - error("CUDNN < 7 doesn't support groups, please upgrade!"); - } -#endif - - // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported - // on architectures with DP4A support (compute capability 6.1 and later). - //cudnnDataType_t data_type = CUDNN_DATA_INT8; - - // backward delta - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w)); - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w)); - CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); - - // forward - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w)); - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w)); - CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); - - // backward delta - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w)); - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w)); - CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); - - // forward - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w)); - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w)); - CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); - - // batch norm - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w)); - - // batch norm - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1)); - CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w)); - - //printf("\n l->dilation = %d, l->pad = %d, l->size = %d, l->stride = %d, l->stride_x = %d, l->stride_y = %d, l->groups = %d, l->w = %d, l->h = %d, l->c = %d, l->n = %d, l->out_w = %d, l->out_h = %d, l->out_c = %d, l->batch = %d, data_type = %d \n", - // l->dilation, l->pad, l->size, l->stride, l->stride_x, l->stride_y, l->groups, l->w, l->h, l->c, l->n, l->out_w, l->out_h, l->out_c, l->batch, data_type); -#if(CUDNN_MAJOR >= 6) - CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad * l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // cudnn >= 6.0 -#else - CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad * l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION)); // cudnn 5.1 -#endif - int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST; - int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST; - int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST; - if (cudnn_preference == cudnn_smallest) - { - forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; - backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; - backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE; - printf(" CUDNN-slow "); - } - if (cudnn_preference == cudnn_specify) - { - forward_algo = CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT; - backward_algo = CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT; - backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT; - //printf(" CUDNN-specified %zu ", workspace_size_specify); - } - - CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), - l->srcTensorDesc, - l->weightDesc, - l->convDesc, - l->dstTensorDesc, - (cudnnConvolutionFwdPreference_t)forward_algo, - workspace_size_specify, - &l->fw_algo)); - CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), - l->weightDesc, - l->ddstTensorDesc, - l->convDesc, - l->dsrcTensorDesc, - (cudnnConvolutionBwdDataPreference_t)backward_algo, - workspace_size_specify, - &l->bd_algo)); - CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), - l->srcTensorDesc, - l->ddstTensorDesc, - l->convDesc, - l->dweightDesc, - (cudnnConvolutionBwdFilterPreference_t)backward_filter, - workspace_size_specify, - &l->bf_algo)); - - //if (data_type == CUDNN_DATA_HALF) - { - // HALF-16 if(data_type == CUDNN_DATA_HALF) - l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; - l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; - l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; - - // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT) - //l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED; - //l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED; - //l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED; - } -} -#endif -#endif - - -void free_convolutional_batchnorm(convolutional_layer *l) -{ - if (!l->share_layer) { - if (l->scales) free(l->scales), l->scales = NULL; - if (l->scale_updates) free(l->scale_updates), l->scale_updates = NULL; - if (l->mean) free(l->mean), l->mean = NULL; - if (l->variance) free(l->variance), l->variance = NULL; - if (l->mean_delta) free(l->mean_delta), l->mean_delta = NULL; - if (l->variance_delta) free(l->variance_delta), l->variance_delta = NULL; - if (l->rolling_mean) free(l->rolling_mean), l->rolling_mean = NULL; - if (l->rolling_variance) free(l->rolling_variance), l->rolling_variance = NULL; - if (l->x) free(l->x), l->x = NULL; - if (l->x_norm) free(l->x_norm), l->x_norm = NULL; - -#ifdef GPU - if (l->scales_gpu) cuda_free(l->scales_gpu), l->scales_gpu = NULL; - if (l->scale_updates_gpu) cuda_free(l->scale_updates_gpu), l->scale_updates_gpu = NULL; - if (l->mean_gpu) cuda_free(l->mean_gpu), l->mean_gpu = NULL; - if (l->variance_gpu) cuda_free(l->variance_gpu), l->variance_gpu = NULL; - if (l->mean_delta_gpu) cuda_free(l->mean_delta_gpu), l->mean_delta_gpu = NULL; - if (l->variance_delta_gpu) cuda_free(l->variance_delta_gpu), l->variance_delta_gpu = NULL; - if (l->rolling_mean_gpu) cuda_free(l->rolling_mean_gpu), l->rolling_mean_gpu = NULL; - if (l->rolling_variance_gpu) cuda_free(l->rolling_variance_gpu), l->rolling_variance_gpu = NULL; - if (l->x_gpu) cuda_free(l->x_gpu), l->x_gpu = NULL; - if (l->x_norm_gpu) cuda_free(l->x_norm_gpu), l->x_norm_gpu = NULL; -#endif - } -} - -convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, convolutional_layer *share_layer, int assisted_excitation, int deform, int train) -{ - int total_batch = batch*steps; - int i; - convolutional_layer l = { (LAYER_TYPE)0 }; - l.type = CONVOLUTIONAL; - l.train = train; - - if (xnor) groups = 1; // disable groups for XNOR-net - if (groups < 1) groups = 1; - - const int blur_stride_x = stride_x; - const int blur_stride_y = stride_y; - l.antialiasing = antialiasing; - if (antialiasing) { - stride_x = stride_y = l.stride = l.stride_x = l.stride_y = 1; // use stride=1 in host-layer - } - - l.deform = deform; - l.assisted_excitation = assisted_excitation; - l.share_layer = share_layer; - l.index = index; - l.h = h; - l.w = w; - l.c = c; - l.groups = groups; - l.n = n; - l.binary = binary; - l.xnor = xnor; - l.use_bin_output = use_bin_output; - l.batch = batch; - l.steps = steps; - l.stride = stride_x; - l.stride_x = stride_x; - l.stride_y = stride_y; - l.dilation = dilation; - l.size = size; - l.pad = padding; - l.batch_normalize = batch_normalize; - l.learning_rate_scale = 1; - l.nweights = (c / groups) * n * size * size; - - if (l.share_layer) { - if (l.size != l.share_layer->size || l.nweights != l.share_layer->nweights || l.c != l.share_layer->c || l.n != l.share_layer->n) { - printf(" Layer size, nweights, channels or filters don't match for the share_layer"); - getchar(); - } - - l.weights = l.share_layer->weights; - l.weight_updates = l.share_layer->weight_updates; - - l.biases = l.share_layer->biases; - l.bias_updates = l.share_layer->bias_updates; - } - else { - l.weights = (float*)xcalloc(l.nweights, sizeof(float)); - l.biases = (float*)xcalloc(n, sizeof(float)); - - if (train) { - l.weight_updates = (float*)xcalloc(l.nweights, sizeof(float)); - l.bias_updates = (float*)xcalloc(n, sizeof(float)); - } - } - - // float scale = 1./sqrt(size*size*c); - float scale = sqrt(2./(size*size*c/groups)); - if (l.activation == NORM_CHAN || l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) { - for (i = 0; i < l.nweights; ++i) l.weights[i] = 1; // rand_normal(); - } - else { - for (i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_uniform(-1, 1); // rand_normal(); - } - int out_h = convolutional_out_height(l); - int out_w = convolutional_out_width(l); - l.out_h = out_h; - l.out_w = out_w; - l.out_c = n; - l.outputs = l.out_h * l.out_w * l.out_c; - l.inputs = l.w * l.h * l.c; - l.activation = activation; - - l.output = (float*)xcalloc(total_batch*l.outputs, sizeof(float)); -#ifndef GPU - if (train) l.delta = (float*)xcalloc(total_batch*l.outputs, sizeof(float)); -#endif // not GPU - - l.forward = forward_convolutional_layer; - l.backward = backward_convolutional_layer; - l.update = update_convolutional_layer; - if(binary){ - l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float)); - l.cweights = (char*)xcalloc(l.nweights, sizeof(char)); - l.scales = (float*)xcalloc(n, sizeof(float)); - } - if(xnor){ - l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float)); - l.binary_input = (float*)xcalloc(l.inputs * l.batch, sizeof(float)); - - int align = 32;// 8; - int src_align = l.out_h*l.out_w; - l.bit_align = src_align + (align - src_align % align); - - l.mean_arr = (float*)xcalloc(l.n, sizeof(float)); - - const size_t new_c = l.c / 32; - size_t in_re_packed_input_size = new_c * l.w * l.h + 1; - l.bin_re_packed_input = (uint32_t*)xcalloc(in_re_packed_input_size, sizeof(uint32_t)); - - l.lda_align = 256; // AVX2 - int k = l.size*l.size*l.c; - size_t k_aligned = k + (l.lda_align - k%l.lda_align); - size_t t_bit_input_size = k_aligned * l.bit_align / 8; - l.t_bit_input = (char*)xcalloc(t_bit_input_size, sizeof(char)); - } - - if(batch_normalize){ - if (l.share_layer) { - l.scales = l.share_layer->scales; - l.scale_updates = l.share_layer->scale_updates; - l.mean = l.share_layer->mean; - l.variance = l.share_layer->variance; - l.mean_delta = l.share_layer->mean_delta; - l.variance_delta = l.share_layer->variance_delta; - l.rolling_mean = l.share_layer->rolling_mean; - l.rolling_variance = l.share_layer->rolling_variance; - } - else { - l.scales = (float*)xcalloc(n, sizeof(float)); - for (i = 0; i < n; ++i) { - l.scales[i] = 1; - } - if (train) { - l.scale_updates = (float*)xcalloc(n, sizeof(float)); - - l.mean = (float*)xcalloc(n, sizeof(float)); - l.variance = (float*)xcalloc(n, sizeof(float)); - - l.mean_delta = (float*)xcalloc(n, sizeof(float)); - l.variance_delta = (float*)xcalloc(n, sizeof(float)); - } - l.rolling_mean = (float*)xcalloc(n, sizeof(float)); - l.rolling_variance = (float*)xcalloc(n, sizeof(float)); - } - -#ifndef GPU - if (train) { - l.x = (float*)xcalloc(total_batch * l.outputs, sizeof(float)); - l.x_norm = (float*)xcalloc(total_batch * l.outputs, sizeof(float)); - } -#endif // not GPU - } - -#ifndef GPU - if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(total_batch*l.outputs, sizeof(float)); -#endif // not GPU - - if(adam){ - l.adam = 1; - l.m = (float*)xcalloc(l.nweights, sizeof(float)); - l.v = (float*)xcalloc(l.nweights, sizeof(float)); - l.bias_m = (float*)xcalloc(n, sizeof(float)); - l.scale_m = (float*)xcalloc(n, sizeof(float)); - l.bias_v = (float*)xcalloc(n, sizeof(float)); - l.scale_v = (float*)xcalloc(n, sizeof(float)); - } - -#ifdef GPU - - - l.forward_gpu = forward_convolutional_layer_gpu; - l.backward_gpu = backward_convolutional_layer_gpu; - l.update_gpu = update_convolutional_layer_gpu; - - if(gpu_index >= 0){ - - if (l.activation == SWISH || l.activation == MISH) { - l.activation_input_gpu = cuda_make_array(l.activation_input, total_batch*l.outputs); - } - - if (l.deform) l.weight_deform_gpu = cuda_make_array(NULL, l.nweights); - - if (adam) { - l.m_gpu = cuda_make_array(l.m, l.nweights); - l.v_gpu = cuda_make_array(l.v, l.nweights); - l.bias_m_gpu = cuda_make_array(l.bias_m, n); - l.bias_v_gpu = cuda_make_array(l.bias_v, n); - l.scale_m_gpu = cuda_make_array(l.scale_m, n); - l.scale_v_gpu = cuda_make_array(l.scale_v, n); - } - if (l.share_layer) { - l.weights_gpu = l.share_layer->weights_gpu; - l.weight_updates_gpu = l.share_layer->weight_updates_gpu; - l.weights_gpu16 = l.share_layer->weights_gpu16; - l.weight_updates_gpu16 = l.share_layer->weight_updates_gpu16; - l.biases_gpu = l.share_layer->biases_gpu; - l.bias_updates_gpu = l.share_layer->bias_updates_gpu; - } - else { - l.weights_gpu = cuda_make_array(l.weights, l.nweights); - if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights); -#ifdef CUDNN_HALF - l.weights_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1); - if (train) l.weight_updates_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1); -#endif // CUDNN_HALF - l.biases_gpu = cuda_make_array(l.biases, n); - if (train) l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); - } - - l.output_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); - if (train) l.delta_gpu = cuda_make_array(l.delta, total_batch*out_h*out_w*n); - - if(binary){ - l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights); - } - if(xnor){ - l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights); - l.mean_arr_gpu = cuda_make_array(0, l.n); - l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); - } - - if(batch_normalize){ - if (l.share_layer) { - l.scales_gpu = l.share_layer->scales_gpu; - l.scale_updates_gpu = l.share_layer->scale_updates_gpu; - l.mean_gpu = l.share_layer->mean_gpu; - l.variance_gpu = l.share_layer->variance_gpu; - l.rolling_mean_gpu = l.share_layer->rolling_mean_gpu; - l.rolling_variance_gpu = l.share_layer->rolling_variance_gpu; - l.mean_delta_gpu = l.share_layer->mean_delta_gpu; - l.variance_delta_gpu = l.share_layer->variance_delta_gpu; - } - else { - l.scales_gpu = cuda_make_array(l.scales, n); - - if (train) { - l.scale_updates_gpu = cuda_make_array(l.scale_updates, n); - - l.mean_gpu = cuda_make_array(l.mean, n); - l.variance_gpu = cuda_make_array(l.variance, n); - l.m_cbn_avg_gpu = cuda_make_array(l.mean, n); - l.v_cbn_avg_gpu = cuda_make_array(l.variance, n); -#ifndef CUDNN - l.mean_delta_gpu = cuda_make_array(l.mean, n); - l.variance_delta_gpu = cuda_make_array(l.variance, n); -#endif // CUDNN - } - - l.rolling_mean_gpu = cuda_make_array(l.mean, n); - l.rolling_variance_gpu = cuda_make_array(l.variance, n); - } - - if (train) { - l.x_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); -#ifndef CUDNN - l.x_norm_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); -#endif // CUDNN - } - } - - if (l.assisted_excitation) - { - const int size = l.out_w * l.out_h * l.batch; - l.gt_gpu = cuda_make_array(NULL, size); - l.a_avg_gpu = cuda_make_array(NULL, size); - } -#ifdef CUDNN - create_convolutional_cudnn_tensors(&l); - cudnn_convolutional_setup(&l, cudnn_fastest, 0); -#endif // CUDNN - } -#endif // GPU - l.workspace_size = get_convolutional_workspace_size(l); - - //fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); - l.bflops = (2.0 * l.nweights * l.out_h*l.out_w) / 1000000000.; - if (l.xnor) l.bflops = l.bflops / 32; - if (l.xnor && l.use_bin_output) fprintf(stderr, "convXB"); - else if (l.xnor) fprintf(stderr, "convX "); - else if (l.share_layer) fprintf(stderr, "convS "); - else if (l.assisted_excitation) fprintf(stderr, "convAE"); - else fprintf(stderr, "conv "); - - if (groups > 1) fprintf(stderr, "%5d/%4d ", n, groups); - else fprintf(stderr, "%5d ", n); - - if (stride_x != stride_y) fprintf(stderr, "%2dx%2d/%2dx%2d ", size, size, stride_x, stride_y); - else { - if (dilation > 1) fprintf(stderr, "%2d x%2d/%2d(%1d)", size, size, stride_x, dilation); - else fprintf(stderr, "%2d x%2d/%2d ", size, size, stride_x); - } - - fprintf(stderr, "%4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", w, h, c, l.out_w, l.out_h, l.out_c, l.bflops); - - //fprintf(stderr, "%5d/%2d %2d x%2d /%2d(%d)%4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, groups, size, size, stride, dilation, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops); - - if (l.antialiasing) { - printf("AA: "); - l.input_layer = (layer*)calloc(1, sizeof(layer)); - int blur_size = 3; - int blur_pad = blur_size / 2; - if (l.antialiasing == 2) { - blur_size = 2; - blur_pad = 0; - } - *(l.input_layer) = make_convolutional_layer(batch, steps, out_h, out_w, n, n, n, blur_size, blur_stride_x, blur_stride_y, 1, blur_pad, LINEAR, 0, 0, 0, 0, 0, index, 0, NULL, 0, 0, train); - const int blur_nweights = n * blur_size * blur_size; // (n / n) * n * blur_size * blur_size; - int i; - if (blur_size == 2) { - for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) { - l.input_layer->weights[i + 0] = 1 / 4.f; - l.input_layer->weights[i + 1] = 1 / 4.f; - l.input_layer->weights[i + 2] = 1 / 4.f; - l.input_layer->weights[i + 3] = 1 / 4.f; - } - } - else { - for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) { - l.input_layer->weights[i + 0] = 1 / 16.f; - l.input_layer->weights[i + 1] = 2 / 16.f; - l.input_layer->weights[i + 2] = 1 / 16.f; - - l.input_layer->weights[i + 3] = 2 / 16.f; - l.input_layer->weights[i + 4] = 4 / 16.f; - l.input_layer->weights[i + 5] = 2 / 16.f; - - l.input_layer->weights[i + 6] = 1 / 16.f; - l.input_layer->weights[i + 7] = 2 / 16.f; - l.input_layer->weights[i + 8] = 1 / 16.f; - } - } - for (i = 0; i < n; ++i) l.input_layer->biases[i] = 0; -#ifdef GPU - if (gpu_index >= 0) { - l.input_antialiasing_gpu = cuda_make_array(NULL, l.batch*l.outputs); - push_convolutional_layer(*(l.input_layer)); - } -#endif // GPU - } - - return l; -} - -void denormalize_convolutional_layer(convolutional_layer l) -{ - int i, j; - for(i = 0; i < l.n; ++i){ - float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); - for(j = 0; j < l.nweights; ++j){ - l.weights[i*l.nweights + j] *= scale; - } - l.biases[i] -= l.rolling_mean[i] * scale; - l.scales[i] = 1; - l.rolling_mean[i] = 0; - l.rolling_variance[i] = 1; - } -} - -void test_convolutional_layer() -{ - convolutional_layer l = make_convolutional_layer(1, 1, 5, 5, 3, 2, 1, 5, 2, 2, 1, 1, LEAKY, 1, 0, 0, 0, 0, 0, 0, NULL, 0, 0, 0); - l.batch_normalize = 1; - float data[] = {1,1,1,1,1, - 1,1,1,1,1, - 1,1,1,1,1, - 1,1,1,1,1, - 1,1,1,1,1, - 2,2,2,2,2, - 2,2,2,2,2, - 2,2,2,2,2, - 2,2,2,2,2, - 2,2,2,2,2, - 3,3,3,3,3, - 3,3,3,3,3, - 3,3,3,3,3, - 3,3,3,3,3, - 3,3,3,3,3}; - network_state state = {0}; - state.input = data; - forward_convolutional_layer(l, state); -} - -void resize_convolutional_layer(convolutional_layer *l, int w, int h) -{ - int total_batch = l->batch*l->steps; - int old_w = l->w; - int old_h = l->h; - l->w = w; - l->h = h; - int out_w = convolutional_out_width(*l); - int out_h = convolutional_out_height(*l); - - l->out_w = out_w; - l->out_h = out_h; - - l->outputs = l->out_h * l->out_w * l->out_c; - l->inputs = l->w * l->h * l->c; - - - l->output = (float*)xrealloc(l->output, total_batch * l->outputs * sizeof(float)); - if (l->train) { - l->delta = (float*)xrealloc(l->delta, total_batch * l->outputs * sizeof(float)); - - if (l->batch_normalize) { - l->x = (float*)xrealloc(l->x, total_batch * l->outputs * sizeof(float)); - l->x_norm = (float*)xrealloc(l->x_norm, total_batch * l->outputs * sizeof(float)); - } - } - - if (l->xnor) { - //l->binary_input = realloc(l->inputs*l->batch, sizeof(float)); - } - - if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, total_batch*l->outputs * sizeof(float)); -#ifdef GPU - if (old_w < w || old_h < h || l->dynamic_minibatch) { - if (l->train) { - cuda_free(l->delta_gpu); - l->delta_gpu = cuda_make_array(l->delta, total_batch*l->outputs); - } - - cuda_free(l->output_gpu); - l->output_gpu = cuda_make_array(l->output, total_batch*l->outputs); - - if (l->batch_normalize) { - cuda_free(l->x_gpu); - l->x_gpu = cuda_make_array(l->output, total_batch*l->outputs); - -#ifndef CUDNN - cuda_free(l->x_norm_gpu); - l->x_norm_gpu = cuda_make_array(l->output, total_batch*l->outputs); -#endif // CUDNN - } - - if (l->xnor) { - cuda_free(l->binary_input_gpu); - l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch); - } - - if (l->activation == SWISH || l->activation == MISH) { - cuda_free(l->activation_input_gpu); - l->activation_input_gpu = cuda_make_array(l->activation_input, total_batch*l->outputs); - } - - if (l->assisted_excitation) - { - cuda_free(l->gt_gpu); - cuda_free(l->a_avg_gpu); - - const int size = l->out_w * l->out_h * l->batch; - l->gt_gpu = cuda_make_array(NULL, size); - l->a_avg_gpu = cuda_make_array(NULL, size); - } - } -#ifdef CUDNN - cudnn_convolutional_setup(l, cudnn_fastest, 0); -#endif -#endif - l->workspace_size = get_convolutional_workspace_size(*l); - -#ifdef CUDNN - // check for excessive memory consumption - size_t free_byte; - size_t total_byte; - CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte)); - if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { - printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2); - cudnn_convolutional_setup(l, cudnn_smallest, 0); - l->workspace_size = get_convolutional_workspace_size(*l); - } -#endif -} - -void set_specified_workspace_limit(convolutional_layer *l, size_t workspace_size_limit) -{ -#ifdef CUDNN - size_t free_byte; - size_t total_byte; - CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte)); - cudnn_convolutional_setup(l, cudnn_specify, workspace_size_limit); - l->workspace_size = get_convolutional_workspace_size(*l); - //printf("Set specified workspace limit for cuDNN: %zu, available: %zu, workspace = %zu \n", workspace_size_limit, free_byte, l->workspace_size); -#endif // CUDNN -} - -void add_bias(float *output, float *biases, int batch, int n, int size) -{ - int i,j,b; - for(b = 0; b < batch; ++b){ - for(i = 0; i < n; ++i){ - for(j = 0; j < size; ++j){ - output[(b*n + i)*size + j] += biases[i]; - } - } - } -} - -void scale_bias(float *output, float *scales, int batch, int n, int size) -{ - int i,j,b; - for(b = 0; b < batch; ++b){ - for(i = 0; i < n; ++i){ - for(j = 0; j < size; ++j){ - output[(b*n + i)*size + j] *= scales[i]; - } - } - } -} - -void backward_bias(float *bias_updates, float *delta, int batch, int n, int size) -{ - int i,b; - for(b = 0; b < batch; ++b){ - for(i = 0; i < n; ++i){ - bias_updates[i] += sum_array(delta+size*(i+b*n), size); - } - } -} - -void gemm_nn_custom(int M, int N, int K, float ALPHA, - float *A, int lda, - float *B, int ldb, - float *C, int ldc) -{ - int i, j, k; - for (i = 0; i < M; ++i) { - for (k = 0; k < K; ++k) { - PUT_IN_REGISTER float A_PART = ALPHA * A[i * lda + k]; - //printf("\n weight = %f \n", A_PART); - for (j = 0; j < N; ++j) { - C[i*ldc + j] += A_PART*B[k*ldb + j]; - } - } - } -} - - -void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) { - size_t i, counter; - counter = 0; - for (i = 0; i < size; i += size / filters) { - mean_arr[counter++] = fabs(src[i]); - } -} - -/* -void float_to_bit(float *src, unsigned char *dst, size_t size) { - - size_t dst_size = size / 8 + 1; - memset(dst, 0, dst_size); - size_t i, dst_i, dst_shift; - for (i = 0; i < size; ++i) { - if (src[i] > 0) set_bit(dst, i); - } -} -*/ - -void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) { - memset(dst, 0, size *sizeof(float)); - size_t i; - - for (i = 0; i < size; ++i) { - float mean_val = 1; - if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]); - if(get_bit(src, i)) dst[i] = mean_val; - else dst[i] = -mean_val; - } -} - -void binary_align_weights(convolutional_layer *l) -{ - int m = l->n; // (l->n / l->groups) - int k = l->size*l->size*l->c; // ->size*l->size*(l->c / l->groups) - size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8; - l->new_lda = new_lda; - - binarize_weights(l->weights, m, k, l->binary_weights); - - size_t align_weights_size = new_lda * m; - l->align_bit_weights_size = align_weights_size / 8 + 1; - float* align_weights = (float*)xcalloc(align_weights_size, sizeof(float)); - l->align_bit_weights = (char*)xcalloc(l->align_bit_weights_size, sizeof(char)); - - size_t i, j; - // align A without transpose - for (i = 0; i < m; ++i) { - for (j = 0; j < k; ++j) { - align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; - } - } - - - if (l->c % 32 == 0) - //if(gpu_index < 0 && l->stride == 1 && l->pad == 1 && l->c % 32 == 0) - //if (l->stride == 1 && l->pad == 1 && l->c % 32 == 0) - { - int fil, chan; - const int items_per_filter = l->c * l->size * l->size; - //const int dst_items_per_filter = new_lda; - for (fil = 0; fil < l->n; ++fil) - { - for (chan = 0; chan < l->c; chan += 32) - { - const int items_per_channel = l->size*l->size; - for (i = 0; i < items_per_channel; ++i) - { - //uint32_t val = 0; - int c_pack; - for (c_pack = 0; c_pack < 32; ++c_pack) { - float src = l->binary_weights[fil*items_per_filter + (chan + c_pack)*items_per_channel + i]; - - //align_weights[fil*items_per_filter + chan*items_per_channel + i * 32 + c_pack] = src; - - align_weights[fil*new_lda + chan*items_per_channel + i*32 + c_pack] = src; - //val |= (src << c); - } - - } - } - } - - //printf("\n l.index = %d \t aw[0] = %f, aw[1] = %f, aw[2] = %f, aw[3] = %f \n", l->index, align_weights[0], align_weights[1], align_weights[2], align_weights[3]); - //memcpy(l->binary_weights, align_weights, (l->size * l->size * l->c * l->n) * sizeof(float)); - - float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size); - - //if (l->n >= 32) - if(gpu_index >= 0) - { - //int M = l->n; - //int N = l->out_w*l->out_h; - //printf("\n M = %d, N = %d, M %% 8 = %d, N %% 8 = %d - weights \n", M, N, M % 8, N % 8); - //printf("\n l.w = %d, l.c = %d, l.n = %d \n", l->w, l->c, l->n); - for (i = 0; i < align_weights_size / 8; ++i) l->align_bit_weights[i] = ~(l->align_bit_weights[i]); - } - - - - get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr); - //get_mean_array(l->binary_weights, m*new_lda, l->n, l->mean_arr); - } - else { - float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size); - - get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr); - } - - //l->mean_arr = calloc(l->n, sizeof(float)); - - //get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr); - - - - -#ifdef GPU - cudaError_t status; - l->align_workspace_size = l->bit_align * l->size * l->size * l->c; - status = cudaMalloc((void **)&l->align_workspace_gpu, l->align_workspace_size * sizeof(float)); - status = cudaMalloc((void **)&l->transposed_align_workspace_gpu, l->align_workspace_size * sizeof(float)); - CHECK_CUDA(status); - - //l->align_bit_weights_gpu = cuda_make_array(l->align_bit_weights, l->align_bit_weights_size * sizeof(char)/sizeof(float)); - status = cudaMalloc((void **)&l->align_bit_weights_gpu, l->align_bit_weights_size); - CHECK_CUDA(status); - status = cudaMemcpy(l->align_bit_weights_gpu, l->align_bit_weights, l->align_bit_weights_size, cudaMemcpyHostToDevice); - CHECK_CUDA(status); - status = cudaMemcpy(l->binary_weights_gpu, l->binary_weights, m*k * sizeof(float), cudaMemcpyHostToDevice); - CHECK_CUDA(status); - - //l->mean_arr_gpu = cuda_make_array(l->mean_arr, l->n); - cuda_push_array(l->mean_arr_gpu, l->mean_arr, l->n); - CHECK_CUDA(cudaDeviceSynchronize()); -#endif // GPU - - free(align_weights); -} - -// binary transpose -size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align) -{ - size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; - //printf("\n n = %d, bit_align = %d \n", n, bit_align); - size_t t_intput_size = new_ldb * bit_align;// n; - size_t t_bit_input_size = t_intput_size / 8;// +1; - - memset(*t_bit_input, 0, t_bit_input_size * sizeof(char)); - //int src_size = k * bit_align; - - // b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size - // t_input - [bit_align, k] - [n', k] - // t_bit_input - [new_ldb, n] - [k', n] - - //transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); - transpose_bin((uint32_t*)b, (uint32_t*)*t_bit_input, k, n, bit_align, new_ldb, 8); - - return t_intput_size; -} - - -void forward_convolutional_layer(convolutional_layer l, network_state state) -{ - int out_h = convolutional_out_height(l); - int out_w = convolutional_out_width(l); - int i, j; - - fill_cpu(l.outputs*l.batch, 0, l.output, 1); - - if (l.xnor && (!l.align_bit_weights || state.train)) { - if (!l.align_bit_weights || state.train) { - binarize_weights(l.weights, l.n, l.nweights, l.binary_weights); - //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights); - } - swap_binary(&l); - binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input); - state.input = l.binary_input; - } - - int m = l.n / l.groups; - int k = l.size*l.size*l.c / l.groups; - int n = out_h*out_w; - - static int u = 0; - u++; - - for(i = 0; i < l.batch; ++i) - { - for (j = 0; j < l.groups; ++j) - { - float *a = l.weights +j*l.nweights / l.groups; - float *b = state.workspace; - float *c = l.output +(i*l.groups + j)*n*m; - - //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); - //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); - if (l.xnor && l.align_bit_weights && !state.train && l.stride_x == l.stride_y) - { - memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float)); - - if (l.c % 32 == 0) - { - //printf(" l.index = %d - new XNOR \n", l.index); - - int ldb_align = l.lda_align; - size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; - //size_t t_intput_size = new_ldb * l.bit_align;// n; - //size_t t_bit_input_size = t_intput_size / 8;// +1; - - int re_packed_input_size = l.c * l.w * l.h; - memset(state.workspace, 0, re_packed_input_size * sizeof(float)); - - const size_t new_c = l.c / 32; - size_t in_re_packed_input_size = new_c * l.w * l.h + 1; - memset(l.bin_re_packed_input, 0, in_re_packed_input_size * sizeof(uint32_t)); - - //float *re_packed_input = calloc(l.c * l.w * l.h, sizeof(float)); - //uint32_t *bin_re_packed_input = calloc(new_c * l.w * l.h + 1, sizeof(uint32_t)); - - // float32x4 by channel (as in cuDNN) - repack_input(state.input, state.workspace, l.w, l.h, l.c); - - // 32 x floats -> 1 x uint32_t - float_to_bit(state.workspace, (unsigned char *)l.bin_re_packed_input, l.c * l.w * l.h); - - //free(re_packed_input); - - // slow - convolution the packed inputs and weights: float x 32 by channel (as in cuDNN) - //convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output, - // l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr); - - // // then exit from if() - - - im2col_cpu_custom((float *)l.bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); - //im2col_cpu((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b); - - //free(bin_re_packed_input); - - int new_k = l.size*l.size*l.c / 32; - - // good for (l.c == 64) - //gemm_nn_bin_32bit_packed(m, n, new_k, 1, - // l.align_bit_weights, l.new_lda/32, - // b, n, - // c, n, l.mean_arr); - - // // then exit from if() - - transpose_uint32((uint32_t *)state.workspace, (uint32_t*)l.t_bit_input, new_k, n, n, new_ldb); - - // the main GEMM function - gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr); - - // // alternative GEMM - //gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1, - // l.align_bit_weights, l.new_lda/32, - // t_bit_input, new_ldb / 32, - // c, n, l.mean_arr); - - //free(t_bit_input); - - } - else - { // else (l.c % 32 != 0) - - //-------------------------------------------------------- - //printf(" l.index = %d - old XNOR \n", l.index); - - //im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align); - im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align); - - //size_t output_size = l.outputs; - //float *count_output = calloc(output_size, sizeof(float)); - //size_t bit_output_size = output_size / 8 + 1; - //char *bit_output = calloc(bit_output_size, sizeof(char)); - - //size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col() - //size_t bit_input_size = intput_size / 8 + 1; - //char *bit_input = calloc(bit_input_size, sizeof(char)); - - //size_t weights_size = k * m; //l.size*l.size*l.c*l.n; // l.nweights - //size_t bit_weights_size = weights_size / 8 + 1; - - //char *bit_weights = calloc(bit_weights_size, sizeof(char)); - //float *mean_arr = calloc(l.n, sizeof(float)); - - // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) - { - //size_t ldb_align = 256; // 256 bit for AVX2 - int ldb_align = l.lda_align; - size_t new_ldb = k + (ldb_align - k%ldb_align); - size_t t_intput_size = binary_transpose_align_input(k, n, state.workspace, &l.t_bit_input, ldb_align, l.bit_align); - - // 5x times faster than gemm()-float32 - gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr); - - //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); - - //free(t_input); - //free(t_bit_input); - //} - } - - } - - add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); - - //activate_array(l.output, m*n*l.batch, l.activation); - if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output); - else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); - else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output); - else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 0); - else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 1); - else activate_array_cpu_custom(l.output, m*n*l.batch, l.activation); - return; - - } - else { - //printf(" l.index = %d - FP32 \n", l.index); - float *im = state.input + (i*l.groups + j)*(l.c / l.groups)*l.h*l.w; - if (l.size == 1) { - b = im; - } - else { - //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b); - - im2col_cpu_ext(im, // input - l.c / l.groups, // input channels - l.h, l.w, // input size (h, w) - l.size, l.size, // kernel size (h, w) - l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) - l.stride_y, l.stride_x, // stride (h, w) - l.dilation, l.dilation, // dilation (h, w) - b); // output - - } - - gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); - // bit-count to float - } - //c += n*m; - //state.input += l.c*l.h*l.w; - } - } - - if(l.batch_normalize){ - forward_batchnorm_layer(l, state); - } - else { - add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); - } - - //activate_array(l.output, m*n*l.batch, l.activation); - if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output); - else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); - else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output); - else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 0); - else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 1); - else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation); - - if(l.binary || l.xnor) swap_binary(&l); - - //visualize_convolutional_layer(l, "conv_visual", NULL); - //wait_until_press_key_cv(); - - if(l.assisted_excitation && state.train) assisted_excitation_forward(l, state); - - if (l.antialiasing) { - network_state s = { 0 }; - s.train = state.train; - s.workspace = state.workspace; - s.net = state.net; - s.input = l.output; - forward_convolutional_layer(*(l.input_layer), s); - //simple_copy_ongpu(l.outputs*l.batch, l.output, l.input_antialiasing); - memcpy(l.output, l.input_layer->output, l.input_layer->outputs * l.input_layer->batch * sizeof(float)); - } -} - -void assisted_excitation_forward(convolutional_layer l, network_state state) -{ - const int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions); - - // epoch - //const float epoch = (float)(*state.net.seen) / state.net.train_images_num; - - // calculate alpha - //const float alpha = (1 + cos(3.141592 * iteration_num)) / (2 * state.net.max_batches); - //const float alpha = (1 + cos(3.141592 * epoch)) / (2 * state.net.max_batches); - float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches)); - - if (l.assisted_excitation > 1) { - if (iteration_num > l.assisted_excitation) alpha = 0; - else alpha = (1 + cos(3.141592 * iteration_num / l.assisted_excitation)); - } - - //printf("\n epoch = %f, alpha = %f, seen = %d, max_batches = %d, train_images_num = %d \n", - // epoch, alpha, (*state.net.seen), state.net.max_batches, state.net.train_images_num); - - float *a_avg = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float)); - float *g = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float)); - - int b; - int w, h, c; - - l.max_boxes = state.net.num_boxes; - l.truths = l.max_boxes*(4 + 1); - - for (b = 0; b < l.batch; ++b) - { - // calculate G - int t; - for (t = 0; t < state.net.num_boxes; ++t) { - box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); - if (!truth.x) break; // continue; - - int left = floor((truth.x - truth.w / 2) * l.out_w); - int right = ceil((truth.x + truth.w / 2) * l.out_w); - int top = floor((truth.y - truth.h / 2) * l.out_h); - int bottom = ceil((truth.y + truth.h / 2) * l.out_h); - - for (w = left; w <= right; w++) { - for (h = top; h < bottom; h++) { - g[w + l.out_w * h + l.out_w*l.out_h*b] = 1; - } - } - } - } - - for (b = 0; b < l.batch; ++b) - { - // calculate average A - for (w = 0; w < l.out_w; w++) { - for (h = 0; h < l.out_h; h++) { - for (c = 0; c < l.out_c; c++) { - a_avg[w + l.out_w*(h + l.out_h*b)] += l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))]; - } - a_avg[w + l.out_w*(h + l.out_h*b)] /= l.out_c; // a_avg / d - } - } - } - - // change activation - for (b = 0; b < l.batch; ++b) - { - for (w = 0; w < l.out_w; w++) { - for (h = 0; h < l.out_h; h++) { - for (c = 0; c < l.out_c; c++) - { - // a = a + alpha(t) + e(c,i,j) = a + alpha(t) + g(i,j) * avg_a(i,j) / channels - l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] += - alpha * - g[w + l.out_w*(h + l.out_h*b)] * - a_avg[w + l.out_w*(h + l.out_h*b)]; - - //l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] = - // alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)]; - } - } - } - } - - if(0) // visualize ground truth - { -#ifdef OPENCV - for (b = 0; b < l.batch; ++b) - { - image img = float_to_image(l.out_w, l.out_h, 1, &g[l.out_w*l.out_h*b]); - char buff[100]; - sprintf(buff, "a_excitation_%d", b); - show_image_cv(img, buff); - - image img2 = float_to_image(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]); - char buff2[100]; - sprintf(buff2, "a_excitation_act_%d", b); - show_image_cv(img2, buff2); - wait_key_cv(5); - } - wait_until_press_key_cv(); -#endif // OPENCV - } - - free(g); - free(a_avg); -} - - -void backward_convolutional_layer(convolutional_layer l, network_state state) -{ - int i, j; - int m = l.n / l.groups; - int n = l.size*l.size*l.c / l.groups; - int k = l.out_w*l.out_h; - - if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta); - else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta); - else if (l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) gradient_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta); - else if (l.activation == NORM_CHAN) gradient_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta); - else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); - - if (l.batch_normalize) { - backward_batchnorm_layer(l, state); - } - else { - backward_bias(l.bias_updates, l.delta, l.batch, l.n, k); - } - - for (i = 0; i < l.batch; ++i) { - for (j = 0; j < l.groups; ++j) { - float *a = l.delta + (i*l.groups + j)*m*k; - float *b = state.workspace; - float *c = l.weight_updates + j*l.nweights / l.groups; - - float *im = state.input + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w; - - //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b); - im2col_cpu_ext( - im, // input - l.c / l.groups, // input channels - l.h, l.w, // input size (h, w) - l.size, l.size, // kernel size (h, w) - l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) - l.stride_y, l.stride_x, // stride (h, w) - l.dilation, l.dilation, // dilation (h, w) - b); // output - - gemm(0, 1, m, n, k, 1, a, k, b, k, 1, c, n); - - if (state.delta) { - a = l.weights + j*l.nweights / l.groups; - b = l.delta + (i*l.groups + j)*m*k; - c = state.workspace; - - gemm(1, 0, n, k, m, 1, a, n, b, k, 0, c, k); - - //col2im_cpu(state.workspace, l.c / l.groups, l.h, l.w, l.size, l.stride, - // l.pad, state.delta + (i*l.groups + j)*l.c / l.groups*l.h*l.w); - - col2im_cpu_ext( - state.workspace, // input - l.c / l.groups, // input channels (h, w) - l.h, l.w, // input size (h, w) - l.size, l.size, // kernel size (h, w) - l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) - l.stride_y, l.stride_x, // stride (h, w) - l.dilation, l.dilation, // dilation (h, w) - state.delta + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w); // output (delta) - } - } - } -} - -void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate_init, float momentum, float decay) -{ - float learning_rate = learning_rate_init*l.learning_rate_scale; - //float momentum = a.momentum; - //float decay = a.decay; - //int batch = a.batch; - - axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1); - axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1); - scal_cpu(l.nweights, momentum, l.weight_updates, 1); - - axpy_cpu(l.n, learning_rate / batch, l.bias_updates, 1, l.biases, 1); - scal_cpu(l.n, momentum, l.bias_updates, 1); - - if (l.scales) { - axpy_cpu(l.n, learning_rate / batch, l.scale_updates, 1, l.scales, 1); - scal_cpu(l.n, momentum, l.scale_updates, 1); - } -} - - - -image get_convolutional_weight(convolutional_layer l, int i) -{ - int h = l.size; - int w = l.size; - int c = l.c / l.groups; - return float_to_image(w, h, c, l.weights + i*h*w*c); -} - -void rgbgr_weights(convolutional_layer l) -{ - int i; - for (i = 0; i < l.n; ++i) { - image im = get_convolutional_weight(l, i); - if (im.c == 3) { - rgbgr_image(im); - } - } -} - -void rescale_weights(convolutional_layer l, float scale, float trans) -{ - int i; - for (i = 0; i < l.n; ++i) { - image im = get_convolutional_weight(l, i); - if (im.c == 3) { - scale_image(im, scale); - float sum = sum_array(im.data, im.w*im.h*im.c); - l.biases[i] += sum*trans; - } - } -} - -image *get_weights(convolutional_layer l) -{ - image *weights = (image *)xcalloc(l.n, sizeof(image)); - int i; - for (i = 0; i < l.n; ++i) { - weights[i] = copy_image(get_convolutional_weight(l, i)); - normalize_image(weights[i]); - /* - char buff[256]; - sprintf(buff, "filter%d", i); - save_image(weights[i], buff); - */ - } - //error("hey"); - return weights; -} - -image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights) -{ - image *single_weights = get_weights(l); - show_images(single_weights, l.n, window); - - image delta = get_convolutional_image(l); - image dc = collapse_image_layers(delta, 1); - char buff[256]; - sprintf(buff, "%s: Output", window); - show_image(dc, buff); - //save_image(dc, buff); - free_image(dc); - return single_weights; -} - +#include "convolutional_layer.h" +#include "utils.h" +#include "batchnorm_layer.h" +#include "im2col.h" +#include "col2im.h" +#include "blas.h" +#include "gemm.h" +#include "box.h" +#include <stdio.h> +#include <time.h> + +#ifdef AI2 +#include "xnor_layer.h" +#endif + +#ifdef __cplusplus +#define PUT_IN_REGISTER +#else +#define PUT_IN_REGISTER register +#endif + +#ifndef AI2 +#define AI2 0 +void forward_xnor_layer(layer l, network_state state); +#endif + +void swap_binary(convolutional_layer *l) +{ + float *swap = l->weights; + l->weights = l->binary_weights; + l->binary_weights = swap; + + #ifdef GPU + swap = l->weights_gpu; + l->weights_gpu = l->binary_weights_gpu; + l->binary_weights_gpu = swap; + #endif +} + +void binarize_weights(float *weights, int n, int size, float *binary) +{ + int i, f; + for(f = 0; f < n; ++f){ + float mean = 0; + for(i = 0; i < size; ++i){ + mean += fabs(weights[f*size + i]); + } + mean = mean / size; + for(i = 0; i < size; ++i){ + binary[f*size + i] = (weights[f*size + i] > 0) ? mean: -mean; + } + } +} + +void binarize_cpu(float *input, int n, float *binary) +{ + int i; + for(i = 0; i < n; ++i){ + binary[i] = (input[i] > 0) ? 1 : -1; + } +} + +void binarize_input(float *input, int n, int size, float *binary) +{ + int i, s; + for(s = 0; s < size; ++s){ + float mean = 0; + for(i = 0; i < n; ++i){ + mean += fabs(input[i*size + s]); + } + mean = mean / n; + for(i = 0; i < n; ++i){ + binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; + } + } +} + +int convolutional_out_height(convolutional_layer l) +{ + return (l.h + 2*l.pad - l.size) / l.stride_y + 1; +} + +int convolutional_out_width(convolutional_layer l) +{ + return (l.w + 2*l.pad - l.size) / l.stride_x + 1; +} + +image get_convolutional_image(convolutional_layer l) +{ + int h,w,c; + h = convolutional_out_height(l); + w = convolutional_out_width(l); + c = l.n; + return float_to_image(w,h,c,l.output); +} + +image get_convolutional_delta(convolutional_layer l) +{ + int h,w,c; + h = convolutional_out_height(l); + w = convolutional_out_width(l); + c = l.n; + return float_to_image(w,h,c,l.delta); +} + +size_t get_workspace_size32(layer l){ +#ifdef CUDNN + if(gpu_index >= 0){ + size_t most = 0; + size_t s = 0; + CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), + l.srcTensorDesc, + l.weightDesc, + l.convDesc, + l.dstTensorDesc, + l.fw_algo, + &s)); + if (s > most) most = s; + CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), + l.srcTensorDesc, + l.ddstTensorDesc, + l.convDesc, + l.dweightDesc, + l.bf_algo, + &s)); + if (s > most && l.train) most = s; + CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), + l.weightDesc, + l.ddstTensorDesc, + l.convDesc, + l.dsrcTensorDesc, + l.bd_algo, + &s)); + if (s > most && l.train) most = s; + return most; + } + #endif + if (l.xnor) { + size_t re_packed_input_size = l.c * l.w * l.h * sizeof(float); + size_t workspace_size = (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float); + if (workspace_size < re_packed_input_size) workspace_size = re_packed_input_size; + return workspace_size; + } + return (size_t)l.out_h*l.out_w*l.size*l.size*(l.c / l.groups)*sizeof(float); +} + +size_t get_workspace_size16(layer l) { +#if defined(CUDNN) && defined(CUDNN_HALF) + if (gpu_index >= 0) { + size_t most = 0; + size_t s = 0; + CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(), + l.srcTensorDesc16, + l.weightDesc16, + l.convDesc, + l.dstTensorDesc16, + l.fw_algo16, + &s)); + if (s > most) most = s; + CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(), + l.srcTensorDesc16, + l.ddstTensorDesc16, + l.convDesc, + l.dweightDesc16, + l.bf_algo16, + &s)); + if (s > most && l.train) most = s; + CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(), + l.weightDesc16, + l.ddstTensorDesc16, + l.convDesc, + l.dsrcTensorDesc16, + l.bd_algo16, + &s)); + if (s > most && l.train) most = s; + return most; + } +#endif + return 0; + //if (l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float); + //return (size_t)l.out_h*l.out_w*l.size*l.size*l.c * sizeof(float); +} + +size_t get_convolutional_workspace_size(layer l) { + size_t workspace_size = get_workspace_size32(l); + size_t workspace_size16 = get_workspace_size16(l); + if (workspace_size16 > workspace_size) workspace_size = workspace_size16; + return workspace_size; +} +#ifdef GPU +#ifdef CUDNN +void create_convolutional_cudnn_tensors(layer *l) +{ + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normTensorDesc)); + + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc)); + CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc)); + CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc)); + + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDescF16)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc16)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc16)); + CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc16)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc16)); + CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc16)); + CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc16)); + + CHECK_CUDNN(cudnnCreateConvolutionDescriptor(&l->convDesc)); +} + +void cudnn_convolutional_setup(layer *l, int cudnn_preference, size_t workspace_size_specify) +{ + +// CUDNN_HALF + // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0): + // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100 + // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case! + + cudnnDataType_t data_type = CUDNN_DATA_FLOAT; + +#if(CUDNN_MAJOR >= 7) + // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH + // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT + // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF + // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/ + // 1. Accumulation into FP32 + // 2. Loss Scaling - required only for: activation gradients. We do not use. + // 3. FP32 Master Copy of Weights + // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops + if (l->groups < 1) l->groups = 1; + if (l->stride_x < 1) l->stride_x = 1; + if (l->stride_y < 1) l->stride_y = 1; + CHECK_CUDNN(cudnnSetConvolutionGroupCount(l->convDesc, l->groups)); + CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH)); +#if((CUDNN_MAJOR*10 + CUDNN_MINOR) >= 72) // cuDNN >= 7.2 + //CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION)); // reduces the speed of regular and group convolution +#endif +#else //if(CUDNN_MAJOR >= 7) + if (l->groups > 1) { + error("CUDNN < 7 doesn't support groups, please upgrade!"); + } +#endif + + // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported + // on architectures with DP4A support (compute capability 6.1 and later). + //cudnnDataType_t data_type = CUDNN_DATA_INT8; + + // backward delta + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w)); + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w)); + CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); + + // forward + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w)); + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w)); + CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); + + // backward delta + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w)); + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w)); + CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); + + // forward + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w)); + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w)); + CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size)); + + // batch norm + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w)); + + // batch norm + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1)); + CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w)); + + //printf("\n l->dilation = %d, l->pad = %d, l->size = %d, l->stride = %d, l->stride_x = %d, l->stride_y = %d, l->groups = %d, l->w = %d, l->h = %d, l->c = %d, l->n = %d, l->out_w = %d, l->out_h = %d, l->out_c = %d, l->batch = %d, data_type = %d \n", + // l->dilation, l->pad, l->size, l->stride, l->stride_x, l->stride_y, l->groups, l->w, l->h, l->c, l->n, l->out_w, l->out_h, l->out_c, l->batch, data_type); +#if(CUDNN_MAJOR >= 6) + CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad * l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // cudnn >= 6.0 +#else + CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad * l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION)); // cudnn 5.1 +#endif + + +#if CUDNN_MAJOR >= 8 + + if (cudnn_preference == cudnn_smallest) + { + workspace_size_specify = 0; + } + + size_t free_memory, total_memory; + int requested_algo_count = 0, returned_algo_count = 0; + int found_conv_algorithm = 0; + float min_time = 1000000; // 1000 sec + + // FWD + cudnnConvolutionFwdAlgoPerf_t conv_fwd_results[100]; + CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithmMaxCount(cudnn_handle(), &requested_algo_count)); + + CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm_v7(cudnn_handle(), + l->srcTensorDesc, + l->weightDesc, + l->convDesc, + l->dstTensorDesc, + requested_algo_count, // (cudnnConvolutionFwdPreference_t)forward_algo, + &returned_algo_count, // workspace_size_specify, + conv_fwd_results)); + + CHECK_CUDA(cudaMemGetInfo(&free_memory, &total_memory)); + + found_conv_algorithm = 0; + min_time = 1000000; // 1000 sec + for (int i = 0; i < returned_algo_count; i++) + { + if (conv_fwd_results[i].status == CUDNN_STATUS_SUCCESS && + conv_fwd_results[i].algo != CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED && + conv_fwd_results[i].memory < free_memory && + (conv_fwd_results[i].memory <= workspace_size_specify || cudnn_preference == cudnn_fastest) && + conv_fwd_results[i].time < min_time) + { + found_conv_algorithm = 1; + l->fw_algo = conv_fwd_results[i].algo; + min_time = conv_fwd_results[i].time; + //printf(" - cuDNN FWD algo: %d, time = %f ms \n", l->fw_algo, min_time); + } + } + + if (!found_conv_algorithm) { + printf(" Error: cuDNN isn't found FWD algo for convolution.\n"); + getchar(); + exit(0); + } + //printf(" cuDNN FWD algo: %d, time = %f ms \n", l->fw_algo, min_time); + + // Bwd-Data + cudnnConvolutionBwdDataAlgoPerf_t conv_bwd_data_results[100]; + CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithmMaxCount(cudnn_handle(), &requested_algo_count)); + + CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithm_v7(cudnn_handle(), + l->weightDesc, + l->ddstTensorDesc, + l->convDesc, + l->dsrcTensorDesc, + requested_algo_count, // (cudnnConvolutionFwdPreference_t)forward_algo, + &returned_algo_count, // workspace_size_specify, + &conv_bwd_data_results[0])); + + CHECK_CUDA(cudaMemGetInfo(&free_memory, &total_memory)); + + found_conv_algorithm = 0; + min_time = 1000000; // 1000 sec + for (int i = 0; i < returned_algo_count; i++) + { + if (conv_bwd_data_results[i].status == CUDNN_STATUS_SUCCESS && + conv_bwd_data_results[i].memory < free_memory && + (conv_bwd_data_results[i].memory <= workspace_size_specify || cudnn_preference == cudnn_fastest) && + conv_bwd_data_results[i].time < min_time) + { + found_conv_algorithm = 1; + l->bd_algo = conv_bwd_data_results[i].algo; + min_time = conv_bwd_data_results[i].time; + } + } + + if (!found_conv_algorithm) { + printf(" Error: cuDNN isn't found BWD-data algo for convolution.\n"); + getchar(); + exit(0); + } + //printf(" cuDNN BWD-data algo: %d \n", l->bd_algo); + + // Bwd-Filters + cudnnConvolutionBwdFilterAlgoPerf_t conv_bwd_filter_results[100]; + CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(cudnn_handle(), &requested_algo_count)); + + CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithm_v7(cudnn_handle(), + l->srcTensorDesc, + l->ddstTensorDesc, + l->convDesc, + l->dweightDesc, + requested_algo_count, // (cudnnConvolutionFwdPreference_t)forward_algo, + &returned_algo_count, // workspace_size_specify, + &conv_bwd_filter_results[0])); + + CHECK_CUDA(cudaMemGetInfo(&free_memory, &total_memory)); + + found_conv_algorithm = 0; + min_time = 1000000; // 1000 sec + for (int i = 0; i < returned_algo_count; i++) + { + if (conv_bwd_filter_results[i].status == CUDNN_STATUS_SUCCESS && + conv_bwd_filter_results[i].memory < free_memory && + (conv_bwd_filter_results[i].memory <= workspace_size_specify || cudnn_preference == cudnn_fastest) && + conv_bwd_filter_results[i].time < min_time) + { + found_conv_algorithm = 1; + l->bf_algo = conv_bwd_filter_results[i].algo; + min_time = conv_bwd_filter_results[i].time; + } + } + + if (!found_conv_algorithm) { + printf(" Error: cuDNN isn't found BWD-filter algo for convolution.\n"); + getchar(); + exit(0); + } + //printf(" cuDNN BWD-filter algo: %d \n", l->bf_algo); + +#else // CUDNN_MAJOR >= 8 + + int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST; + int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST; + int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST; + if (cudnn_preference == cudnn_smallest) + { + forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE; + backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE; + backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE; + printf(" CUDNN-slow "); + } + if (cudnn_preference == cudnn_specify) + { + forward_algo = CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT; + backward_algo = CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT; + backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT; + //printf(" CUDNN-specified %zu ", workspace_size_specify); + } + + CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn_handle(), + l->srcTensorDesc, + l->weightDesc, + l->convDesc, + l->dstTensorDesc, + (cudnnConvolutionFwdPreference_t)forward_algo, + workspace_size_specify, + &l->fw_algo)); + + CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(), + l->weightDesc, + l->ddstTensorDesc, + l->convDesc, + l->dsrcTensorDesc, + (cudnnConvolutionBwdDataPreference_t)backward_algo, + workspace_size_specify, + &l->bd_algo)); + + CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(), + l->srcTensorDesc, + l->ddstTensorDesc, + l->convDesc, + l->dweightDesc, + (cudnnConvolutionBwdFilterPreference_t)backward_filter, + workspace_size_specify, + &l->bf_algo)); +#endif // CUDNN_MAJOR >= 8 + + + //if (data_type == CUDNN_DATA_HALF) + { + // HALF-16 if(data_type == CUDNN_DATA_HALF) + l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM; + l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1; + l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1; + + // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT) + //l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED; + //l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED; + //l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED; + } +} +#endif +#endif + + +void free_convolutional_batchnorm(convolutional_layer *l) +{ + if (!l->share_layer) { + if (l->scales) free(l->scales), l->scales = NULL; + if (l->scale_updates) free(l->scale_updates), l->scale_updates = NULL; + if (l->mean) free(l->mean), l->mean = NULL; + if (l->variance) free(l->variance), l->variance = NULL; + if (l->mean_delta) free(l->mean_delta), l->mean_delta = NULL; + if (l->variance_delta) free(l->variance_delta), l->variance_delta = NULL; + if (l->rolling_mean) free(l->rolling_mean), l->rolling_mean = NULL; + if (l->rolling_variance) free(l->rolling_variance), l->rolling_variance = NULL; + if (l->x) free(l->x), l->x = NULL; + if (l->x_norm) free(l->x_norm), l->x_norm = NULL; + +#ifdef GPU + if (l->scales_gpu) cuda_free(l->scales_gpu), l->scales_gpu = NULL; + if (l->scale_updates_gpu) cuda_free(l->scale_updates_gpu), l->scale_updates_gpu = NULL; + if (l->mean_gpu) cuda_free(l->mean_gpu), l->mean_gpu = NULL; + if (l->variance_gpu) cuda_free(l->variance_gpu), l->variance_gpu = NULL; + if (l->mean_delta_gpu) cuda_free(l->mean_delta_gpu), l->mean_delta_gpu = NULL; + if (l->variance_delta_gpu) cuda_free(l->variance_delta_gpu), l->variance_delta_gpu = NULL; + if (l->rolling_mean_gpu) cuda_free(l->rolling_mean_gpu), l->rolling_mean_gpu = NULL; + if (l->rolling_variance_gpu) cuda_free(l->rolling_variance_gpu), l->rolling_variance_gpu = NULL; + if (l->x_gpu) cuda_free(l->x_gpu), l->x_gpu = NULL; + if (l->x_norm_gpu) cuda_free(l->x_norm_gpu), l->x_norm_gpu = NULL; +#endif + } +} + +convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, convolutional_layer *share_layer, int assisted_excitation, int deform, int train) +{ + int total_batch = batch*steps; + int i; + convolutional_layer l = { (LAYER_TYPE)0 }; + l.type = CONVOLUTIONAL; + l.train = train; + + if (xnor) groups = 1; // disable groups for XNOR-net + if (groups < 1) groups = 1; + + const int blur_stride_x = stride_x; + const int blur_stride_y = stride_y; + l.antialiasing = antialiasing; + if (antialiasing) { + stride_x = stride_y = l.stride = l.stride_x = l.stride_y = 1; // use stride=1 in host-layer + } + + l.deform = deform; + l.assisted_excitation = assisted_excitation; + l.share_layer = share_layer; + l.index = index; + l.h = h; + l.w = w; + l.c = c; + l.groups = groups; + l.n = n; + l.binary = binary; + l.xnor = xnor; + l.use_bin_output = use_bin_output; + l.batch = batch; + l.steps = steps; + l.stride = stride_x; + l.stride_x = stride_x; + l.stride_y = stride_y; + l.dilation = dilation; + l.size = size; + l.pad = padding; + l.batch_normalize = batch_normalize; + l.learning_rate_scale = 1; + l.nweights = (c / groups) * n * size * size; + + if (l.share_layer) { + if (l.size != l.share_layer->size || l.nweights != l.share_layer->nweights || l.c != l.share_layer->c || l.n != l.share_layer->n) { + printf(" Layer size, nweights, channels or filters don't match for the share_layer"); + getchar(); + } + + l.weights = l.share_layer->weights; + l.weight_updates = l.share_layer->weight_updates; + + l.biases = l.share_layer->biases; + l.bias_updates = l.share_layer->bias_updates; + } + else { + l.weights = (float*)xcalloc(l.nweights, sizeof(float)); + l.biases = (float*)xcalloc(n, sizeof(float)); + + if (train) { + l.weight_updates = (float*)xcalloc(l.nweights, sizeof(float)); + l.bias_updates = (float*)xcalloc(n, sizeof(float)); + + l.weights_ema = (float*)xcalloc(l.nweights, sizeof(float)); + l.biases_ema = (float*)xcalloc(n, sizeof(float)); + } + } + + // float scale = 1./sqrt(size*size*c); + float scale = sqrt(2./(size*size*c/groups)); + if (l.activation == NORM_CHAN || l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) { + for (i = 0; i < l.nweights; ++i) l.weights[i] = 1; // rand_normal(); + } + else { + for (i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_uniform(-1, 1); // rand_normal(); + } + int out_h = convolutional_out_height(l); + int out_w = convolutional_out_width(l); + l.out_h = out_h; + l.out_w = out_w; + l.out_c = n; + l.outputs = l.out_h * l.out_w * l.out_c; + l.inputs = l.w * l.h * l.c; + l.activation = activation; + + l.output = (float*)xcalloc(total_batch*l.outputs, sizeof(float)); +#ifndef GPU + if (train) l.delta = (float*)xcalloc(total_batch*l.outputs, sizeof(float)); +#endif // not GPU + + l.forward = forward_convolutional_layer; + l.backward = backward_convolutional_layer; + l.update = update_convolutional_layer; + if(binary){ + l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float)); + l.cweights = (char*)xcalloc(l.nweights, sizeof(char)); + l.scales = (float*)xcalloc(n, sizeof(float)); + } + if(xnor){ + l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float)); + l.binary_input = (float*)xcalloc(l.inputs * l.batch, sizeof(float)); + + int align = 32;// 8; + int src_align = l.out_h*l.out_w; + l.bit_align = src_align + (align - src_align % align); + + l.mean_arr = (float*)xcalloc(l.n, sizeof(float)); + + const size_t new_c = l.c / 32; + size_t in_re_packed_input_size = new_c * l.w * l.h + 1; + l.bin_re_packed_input = (uint32_t*)xcalloc(in_re_packed_input_size, sizeof(uint32_t)); + + l.lda_align = 256; // AVX2 + int k = l.size*l.size*l.c; + size_t k_aligned = k + (l.lda_align - k%l.lda_align); + size_t t_bit_input_size = k_aligned * l.bit_align / 8; + l.t_bit_input = (char*)xcalloc(t_bit_input_size, sizeof(char)); + } + + if(batch_normalize){ + if (l.share_layer) { + l.scales = l.share_layer->scales; + l.scale_updates = l.share_layer->scale_updates; + l.mean = l.share_layer->mean; + l.variance = l.share_layer->variance; + l.mean_delta = l.share_layer->mean_delta; + l.variance_delta = l.share_layer->variance_delta; + l.rolling_mean = l.share_layer->rolling_mean; + l.rolling_variance = l.share_layer->rolling_variance; + } + else { + l.scales = (float*)xcalloc(n, sizeof(float)); + for (i = 0; i < n; ++i) { + l.scales[i] = 1; + } + if (train) { + l.scales_ema = (float*)xcalloc(n, sizeof(float)); + l.scale_updates = (float*)xcalloc(n, sizeof(float)); + + l.mean = (float*)xcalloc(n, sizeof(float)); + l.variance = (float*)xcalloc(n, sizeof(float)); + + l.mean_delta = (float*)xcalloc(n, sizeof(float)); + l.variance_delta = (float*)xcalloc(n, sizeof(float)); + } + l.rolling_mean = (float*)xcalloc(n, sizeof(float)); + l.rolling_variance = (float*)xcalloc(n, sizeof(float)); + } + +#ifndef GPU + if (train) { + l.x = (float*)xcalloc(total_batch * l.outputs, sizeof(float)); + l.x_norm = (float*)xcalloc(total_batch * l.outputs, sizeof(float)); + } +#endif // not GPU + } + +#ifndef GPU + if (l.activation == SWISH || l.activation == MISH || l.activation == HARD_MISH) l.activation_input = (float*)calloc(total_batch*l.outputs, sizeof(float)); +#endif // not GPU + + if(adam){ + l.adam = 1; + l.m = (float*)xcalloc(l.nweights, sizeof(float)); + l.v = (float*)xcalloc(l.nweights, sizeof(float)); + l.bias_m = (float*)xcalloc(n, sizeof(float)); + l.scale_m = (float*)xcalloc(n, sizeof(float)); + l.bias_v = (float*)xcalloc(n, sizeof(float)); + l.scale_v = (float*)xcalloc(n, sizeof(float)); + } + +#ifdef GPU + + + l.forward_gpu = forward_convolutional_layer_gpu; + l.backward_gpu = backward_convolutional_layer_gpu; + l.update_gpu = update_convolutional_layer_gpu; + + if(gpu_index >= 0){ + + if (train && (l.activation == SWISH || l.activation == MISH || l.activation == HARD_MISH)) { + l.activation_input_gpu = cuda_make_array(l.activation_input, total_batch*l.outputs); + } + + if (l.deform) l.weight_deform_gpu = cuda_make_array(NULL, l.nweights); + + if (adam) { + l.m_gpu = cuda_make_array(l.m, l.nweights); + l.v_gpu = cuda_make_array(l.v, l.nweights); + l.bias_m_gpu = cuda_make_array(l.bias_m, n); + l.bias_v_gpu = cuda_make_array(l.bias_v, n); + l.scale_m_gpu = cuda_make_array(l.scale_m, n); + l.scale_v_gpu = cuda_make_array(l.scale_v, n); + } + if (l.share_layer) { + l.weights_gpu = l.share_layer->weights_gpu; + l.weight_updates_gpu = l.share_layer->weight_updates_gpu; + l.weights_gpu16 = l.share_layer->weights_gpu16; + l.weight_updates_gpu16 = l.share_layer->weight_updates_gpu16; + l.biases_gpu = l.share_layer->biases_gpu; + l.bias_updates_gpu = l.share_layer->bias_updates_gpu; + } + else { + l.weights_gpu = cuda_make_array(l.weights, l.nweights); + if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights); +#ifdef CUDNN_HALF + l.weights_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1); + if (train) l.weight_updates_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1); +#endif // CUDNN_HALF + l.biases_gpu = cuda_make_array(l.biases, n); + if (train) l.bias_updates_gpu = cuda_make_array(l.bias_updates, n); + } + + l.output_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); + if (train) l.delta_gpu = cuda_make_array(l.delta, total_batch*out_h*out_w*n); + + if(binary){ + l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights); + } + if(xnor){ + l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights); + l.mean_arr_gpu = cuda_make_array(0, l.n); + l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch); + } + + if(batch_normalize){ + if (l.share_layer) { + l.scales_gpu = l.share_layer->scales_gpu; + l.scale_updates_gpu = l.share_layer->scale_updates_gpu; + l.mean_gpu = l.share_layer->mean_gpu; + l.variance_gpu = l.share_layer->variance_gpu; + l.rolling_mean_gpu = l.share_layer->rolling_mean_gpu; + l.rolling_variance_gpu = l.share_layer->rolling_variance_gpu; + l.mean_delta_gpu = l.share_layer->mean_delta_gpu; + l.variance_delta_gpu = l.share_layer->variance_delta_gpu; + } + else { + l.scales_gpu = cuda_make_array(l.scales, n); + + if (train) { + l.scale_updates_gpu = cuda_make_array(l.scale_updates, n); + + l.mean_gpu = cuda_make_array(l.mean, n); + l.variance_gpu = cuda_make_array(l.variance, n); + l.m_cbn_avg_gpu = cuda_make_array(l.mean, n); + l.v_cbn_avg_gpu = cuda_make_array(l.variance, n); +#ifndef CUDNN + l.mean_delta_gpu = cuda_make_array(l.mean, n); + l.variance_delta_gpu = cuda_make_array(l.variance, n); +#endif // CUDNN + } + + l.rolling_mean_gpu = cuda_make_array(l.mean, n); + l.rolling_variance_gpu = cuda_make_array(l.variance, n); + } + + if (train) { + l.x_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); +#ifndef CUDNN + l.x_norm_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n); +#endif // CUDNN + } + } + + if (l.assisted_excitation) + { + const int size = l.out_w * l.out_h * l.batch; + l.gt_gpu = cuda_make_array(NULL, size); + l.a_avg_gpu = cuda_make_array(NULL, size); + } +#ifdef CUDNN + create_convolutional_cudnn_tensors(&l); + cudnn_convolutional_setup(&l, cudnn_fastest, 0); +#endif // CUDNN + } +#endif // GPU + l.workspace_size = get_convolutional_workspace_size(l); + + //fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c); + l.bflops = (2.0 * l.nweights * l.out_h*l.out_w) / 1000000000.; + if (l.xnor) l.bflops = l.bflops / 32; + if (l.xnor && l.use_bin_output) fprintf(stderr, "convXB"); + else if (l.xnor) fprintf(stderr, "convX "); + else if (l.share_layer) fprintf(stderr, "convS "); + else if (l.assisted_excitation) fprintf(stderr, "convAE"); + else fprintf(stderr, "conv "); + + if (groups > 1) fprintf(stderr, "%5d/%4d ", n, groups); + else fprintf(stderr, "%5d ", n); + + if (stride_x != stride_y) fprintf(stderr, "%2dx%2d/%2dx%2d ", size, size, stride_x, stride_y); + else { + if (dilation > 1) fprintf(stderr, "%2d x%2d/%2d(%1d)", size, size, stride_x, dilation); + else fprintf(stderr, "%2d x%2d/%2d ", size, size, stride_x); + } + + fprintf(stderr, "%4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", w, h, c, l.out_w, l.out_h, l.out_c, l.bflops); + + //fprintf(stderr, "%5d/%2d %2d x%2d /%2d(%d)%4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, groups, size, size, stride, dilation, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops); + + if (l.antialiasing) { + printf("AA: "); + l.input_layer = (layer*)calloc(1, sizeof(layer)); + int blur_size = 3; + int blur_pad = blur_size / 2; + if (l.antialiasing == 2) { + blur_size = 2; + blur_pad = 0; + } + *(l.input_layer) = make_convolutional_layer(batch, steps, out_h, out_w, n, n, n, blur_size, blur_stride_x, blur_stride_y, 1, blur_pad, LINEAR, 0, 0, 0, 0, 0, index, 0, NULL, 0, 0, train); + const int blur_nweights = n * blur_size * blur_size; // (n / n) * n * blur_size * blur_size; + int i; + if (blur_size == 2) { + for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) { + l.input_layer->weights[i + 0] = 1 / 4.f; + l.input_layer->weights[i + 1] = 1 / 4.f; + l.input_layer->weights[i + 2] = 1 / 4.f; + l.input_layer->weights[i + 3] = 1 / 4.f; + } + } + else { + for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) { + l.input_layer->weights[i + 0] = 1 / 16.f; + l.input_layer->weights[i + 1] = 2 / 16.f; + l.input_layer->weights[i + 2] = 1 / 16.f; + + l.input_layer->weights[i + 3] = 2 / 16.f; + l.input_layer->weights[i + 4] = 4 / 16.f; + l.input_layer->weights[i + 5] = 2 / 16.f; + + l.input_layer->weights[i + 6] = 1 / 16.f; + l.input_layer->weights[i + 7] = 2 / 16.f; + l.input_layer->weights[i + 8] = 1 / 16.f; + } + } + for (i = 0; i < n; ++i) l.input_layer->biases[i] = 0; +#ifdef GPU + if (gpu_index >= 0) { + l.input_antialiasing_gpu = cuda_make_array(NULL, l.batch*l.outputs); + push_convolutional_layer(*(l.input_layer)); + } +#endif // GPU + } + + return l; +} + +void denormalize_convolutional_layer(convolutional_layer l) +{ + int i, j; + for(i = 0; i < l.n; ++i){ + float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001); + for(j = 0; j < l.nweights; ++j){ + l.weights[i*l.nweights + j] *= scale; + } + l.biases[i] -= l.rolling_mean[i] * scale; + l.scales[i] = 1; + l.rolling_mean[i] = 0; + l.rolling_variance[i] = 1; + } +} + +void test_convolutional_layer() +{ + convolutional_layer l = make_convolutional_layer(1, 1, 5, 5, 3, 2, 1, 5, 2, 2, 1, 1, LEAKY, 1, 0, 0, 0, 0, 0, 0, NULL, 0, 0, 0); + l.batch_normalize = 1; + float data[] = {1,1,1,1,1, + 1,1,1,1,1, + 1,1,1,1,1, + 1,1,1,1,1, + 1,1,1,1,1, + 2,2,2,2,2, + 2,2,2,2,2, + 2,2,2,2,2, + 2,2,2,2,2, + 2,2,2,2,2, + 3,3,3,3,3, + 3,3,3,3,3, + 3,3,3,3,3, + 3,3,3,3,3, + 3,3,3,3,3}; + network_state state = {0}; + state.input = data; + forward_convolutional_layer(l, state); +} + +void resize_convolutional_layer(convolutional_layer *l, int w, int h) +{ + int total_batch = l->batch*l->steps; + int old_w = l->w; + int old_h = l->h; + l->w = w; + l->h = h; + int out_w = convolutional_out_width(*l); + int out_h = convolutional_out_height(*l); + + l->out_w = out_w; + l->out_h = out_h; + + l->outputs = l->out_h * l->out_w * l->out_c; + l->inputs = l->w * l->h * l->c; + + + l->output = (float*)xrealloc(l->output, total_batch * l->outputs * sizeof(float)); + if (l->train) { + l->delta = (float*)xrealloc(l->delta, total_batch * l->outputs * sizeof(float)); + + if (l->batch_normalize) { + l->x = (float*)xrealloc(l->x, total_batch * l->outputs * sizeof(float)); + l->x_norm = (float*)xrealloc(l->x_norm, total_batch * l->outputs * sizeof(float)); + } + } + + if (l->xnor) { + //l->binary_input = realloc(l->inputs*l->batch, sizeof(float)); + } + + if (l->activation == SWISH || l->activation == MISH || l->activation == HARD_MISH) l->activation_input = (float*)realloc(l->activation_input, total_batch*l->outputs * sizeof(float)); +#ifdef GPU + if (old_w < w || old_h < h || l->dynamic_minibatch) { + if (l->train) { + cuda_free(l->delta_gpu); + l->delta_gpu = cuda_make_array(l->delta, total_batch*l->outputs); + } + + cuda_free(l->output_gpu); + l->output_gpu = cuda_make_array(l->output, total_batch*l->outputs); + + if (l->batch_normalize) { + cuda_free(l->x_gpu); + l->x_gpu = cuda_make_array(l->output, total_batch*l->outputs); + +#ifndef CUDNN + cuda_free(l->x_norm_gpu); + l->x_norm_gpu = cuda_make_array(l->output, total_batch*l->outputs); +#endif // CUDNN + } + + if (l->xnor) { + cuda_free(l->binary_input_gpu); + l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch); + } + + if (l->activation == SWISH || l->activation == MISH || l->activation == HARD_MISH) { + cuda_free(l->activation_input_gpu); + l->activation_input_gpu = cuda_make_array(l->activation_input, total_batch*l->outputs); + } + + if (l->assisted_excitation) + { + cuda_free(l->gt_gpu); + cuda_free(l->a_avg_gpu); + + const int size = l->out_w * l->out_h * l->batch; + l->gt_gpu = cuda_make_array(NULL, size); + l->a_avg_gpu = cuda_make_array(NULL, size); + } + } +#ifdef CUDNN + cudnn_convolutional_setup(l, cudnn_fastest, 0); +#endif +#endif + l->workspace_size = get_convolutional_workspace_size(*l); + +#ifdef CUDNN + // check for excessive memory consumption + size_t free_byte; + size_t total_byte; + CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte)); + if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) { + printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2); + cudnn_convolutional_setup(l, cudnn_smallest, 0); + l->workspace_size = get_convolutional_workspace_size(*l); + } +#endif +} + +void set_specified_workspace_limit(convolutional_layer *l, size_t workspace_size_limit) +{ +#ifdef CUDNN + size_t free_byte; + size_t total_byte; + CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte)); + cudnn_convolutional_setup(l, cudnn_specify, workspace_size_limit); + l->workspace_size = get_convolutional_workspace_size(*l); + //printf("Set specified workspace limit for cuDNN: %zu, available: %zu, workspace = %zu \n", workspace_size_limit, free_byte, l->workspace_size); +#endif // CUDNN +} + +void add_bias(float *output, float *biases, int batch, int n, int size) +{ + int i,j,b; + for(b = 0; b < batch; ++b){ + for(i = 0; i < n; ++i){ + for(j = 0; j < size; ++j){ + output[(b*n + i)*size + j] += biases[i]; + } + } + } +} + +void scale_bias(float *output, float *scales, int batch, int n, int size) +{ + int i,j,b; + for(b = 0; b < batch; ++b){ + for(i = 0; i < n; ++i){ + for(j = 0; j < size; ++j){ + output[(b*n + i)*size + j] *= scales[i]; + } + } + } +} + +void backward_bias(float *bias_updates, float *delta, int batch, int n, int size) +{ + int i,b; + for(b = 0; b < batch; ++b){ + for(i = 0; i < n; ++i){ + bias_updates[i] += sum_array(delta+size*(i+b*n), size); + } + } +} + +void gemm_nn_custom(int M, int N, int K, float ALPHA, + float *A, int lda, + float *B, int ldb, + float *C, int ldc) +{ + int i, j, k; + for (i = 0; i < M; ++i) { + for (k = 0; k < K; ++k) { + PUT_IN_REGISTER float A_PART = ALPHA * A[i * lda + k]; + //printf("\n weight = %f \n", A_PART); + for (j = 0; j < N; ++j) { + C[i*ldc + j] += A_PART*B[k*ldb + j]; + } + } + } +} + + +void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) { + size_t i, counter; + counter = 0; + for (i = 0; i < size; i += size / filters) { + mean_arr[counter++] = fabs(src[i]); + } +} + +/* +void float_to_bit(float *src, unsigned char *dst, size_t size) { + + size_t dst_size = size / 8 + 1; + memset(dst, 0, dst_size); + size_t i, dst_i, dst_shift; + for (i = 0; i < size; ++i) { + if (src[i] > 0) set_bit(dst, i); + } +} +*/ + +void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) { + memset(dst, 0, size *sizeof(float)); + size_t i; + + for (i = 0; i < size; ++i) { + float mean_val = 1; + if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]); + if(get_bit(src, i)) dst[i] = mean_val; + else dst[i] = -mean_val; + } +} + +void binary_align_weights(convolutional_layer *l) +{ + int m = l->n; // (l->n / l->groups) + int k = l->size*l->size*l->c; // ->size*l->size*(l->c / l->groups) + size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8; + l->new_lda = new_lda; + + binarize_weights(l->weights, m, k, l->binary_weights); + + size_t align_weights_size = new_lda * m; + l->align_bit_weights_size = align_weights_size / 8 + 1; + float* align_weights = (float*)xcalloc(align_weights_size, sizeof(float)); + l->align_bit_weights = (char*)xcalloc(l->align_bit_weights_size, sizeof(char)); + + size_t i, j; + // align A without transpose + for (i = 0; i < m; ++i) { + for (j = 0; j < k; ++j) { + align_weights[i*new_lda + j] = l->binary_weights[i*k + j]; + } + } + + + if (l->c % 32 == 0) + //if(gpu_index < 0 && l->stride == 1 && l->pad == 1 && l->c % 32 == 0) + //if (l->stride == 1 && l->pad == 1 && l->c % 32 == 0) + { + int fil, chan; + const int items_per_filter = l->c * l->size * l->size; + //const int dst_items_per_filter = new_lda; + for (fil = 0; fil < l->n; ++fil) + { + for (chan = 0; chan < l->c; chan += 32) + { + const int items_per_channel = l->size*l->size; + for (i = 0; i < items_per_channel; ++i) + { + //uint32_t val = 0; + int c_pack; + for (c_pack = 0; c_pack < 32; ++c_pack) { + float src = l->binary_weights[fil*items_per_filter + (chan + c_pack)*items_per_channel + i]; + + //align_weights[fil*items_per_filter + chan*items_per_channel + i * 32 + c_pack] = src; + + align_weights[fil*new_lda + chan*items_per_channel + i*32 + c_pack] = src; + //val |= (src << c); + } + + } + } + } + + //printf("\n l.index = %d \t aw[0] = %f, aw[1] = %f, aw[2] = %f, aw[3] = %f \n", l->index, align_weights[0], align_weights[1], align_weights[2], align_weights[3]); + //memcpy(l->binary_weights, align_weights, (l->size * l->size * l->c * l->n) * sizeof(float)); + + float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size); + + //if (l->n >= 32) + if(gpu_index >= 0) + { + //int M = l->n; + //int N = l->out_w*l->out_h; + //printf("\n M = %d, N = %d, M %% 8 = %d, N %% 8 = %d - weights \n", M, N, M % 8, N % 8); + //printf("\n l.w = %d, l.c = %d, l.n = %d \n", l->w, l->c, l->n); + for (i = 0; i < align_weights_size / 8; ++i) l->align_bit_weights[i] = ~(l->align_bit_weights[i]); + } + + + + get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr); + //get_mean_array(l->binary_weights, m*new_lda, l->n, l->mean_arr); + } + else { + float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size); + + get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr); + } + + //l->mean_arr = calloc(l->n, sizeof(float)); + + //get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr); + + + + +#ifdef GPU + cudaError_t status; + l->align_workspace_size = l->bit_align * l->size * l->size * l->c; + status = cudaMalloc((void **)&l->align_workspace_gpu, l->align_workspace_size * sizeof(float)); + status = cudaMalloc((void **)&l->transposed_align_workspace_gpu, l->align_workspace_size * sizeof(float)); + CHECK_CUDA(status); + + //l->align_bit_weights_gpu = cuda_make_array(l->align_bit_weights, l->align_bit_weights_size * sizeof(char)/sizeof(float)); + status = cudaMalloc((void **)&l->align_bit_weights_gpu, l->align_bit_weights_size); + CHECK_CUDA(status); + status = cudaMemcpy(l->align_bit_weights_gpu, l->align_bit_weights, l->align_bit_weights_size, cudaMemcpyHostToDevice); + CHECK_CUDA(status); + status = cudaMemcpy(l->binary_weights_gpu, l->binary_weights, m*k * sizeof(float), cudaMemcpyHostToDevice); + CHECK_CUDA(status); + + //l->mean_arr_gpu = cuda_make_array(l->mean_arr, l->n); + cuda_push_array(l->mean_arr_gpu, l->mean_arr, l->n); + CHECK_CUDA(cudaDeviceSynchronize()); +#endif // GPU + + free(align_weights); +} + +// binary transpose +size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align) +{ + size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; + //printf("\n n = %d, bit_align = %d \n", n, bit_align); + size_t t_intput_size = new_ldb * bit_align;// n; + size_t t_bit_input_size = t_intput_size / 8;// +1; + + memset(*t_bit_input, 0, t_bit_input_size * sizeof(char)); + //int src_size = k * bit_align; + + // b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size + // t_input - [bit_align, k] - [n', k] + // t_bit_input - [new_ldb, n] - [k', n] + + //transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8); + transpose_bin((uint32_t*)b, (uint32_t*)*t_bit_input, k, n, bit_align, new_ldb, 8); + + return t_intput_size; +} + + +void forward_convolutional_layer(convolutional_layer l, network_state state) +{ + int out_h = convolutional_out_height(l); + int out_w = convolutional_out_width(l); + int i, j; + + fill_cpu(l.outputs*l.batch, 0, l.output, 1); + + if (l.xnor && (!l.align_bit_weights || state.train)) { + if (!l.align_bit_weights || state.train) { + binarize_weights(l.weights, l.n, l.nweights, l.binary_weights); + //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights); + } + swap_binary(&l); + binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input); + state.input = l.binary_input; + } + + int m = l.n / l.groups; + int k = l.size*l.size*l.c / l.groups; + int n = out_h*out_w; + + static int u = 0; + u++; + + for(i = 0; i < l.batch; ++i) + { + for (j = 0; j < l.groups; ++j) + { + float *a = l.weights +j*l.nweights / l.groups; + float *b = state.workspace; + float *c = l.output +(i*l.groups + j)*n*m; + + //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); + //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n); + if (l.xnor && l.align_bit_weights && !state.train && l.stride_x == l.stride_y) + { + memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float)); + + if (l.c % 32 == 0) + { + //printf(" l.index = %d - new XNOR \n", l.index); + + int ldb_align = l.lda_align; + size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8; + //size_t t_intput_size = new_ldb * l.bit_align;// n; + //size_t t_bit_input_size = t_intput_size / 8;// +1; + + int re_packed_input_size = l.c * l.w * l.h; + memset(state.workspace, 0, re_packed_input_size * sizeof(float)); + + const size_t new_c = l.c / 32; + size_t in_re_packed_input_size = new_c * l.w * l.h + 1; + memset(l.bin_re_packed_input, 0, in_re_packed_input_size * sizeof(uint32_t)); + + //float *re_packed_input = calloc(l.c * l.w * l.h, sizeof(float)); + //uint32_t *bin_re_packed_input = calloc(new_c * l.w * l.h + 1, sizeof(uint32_t)); + + // float32x4 by channel (as in cuDNN) + repack_input(state.input, state.workspace, l.w, l.h, l.c); + + // 32 x floats -> 1 x uint32_t + float_to_bit(state.workspace, (unsigned char *)l.bin_re_packed_input, l.c * l.w * l.h); + + //free(re_packed_input); + + // slow - convolution the packed inputs and weights: float x 32 by channel (as in cuDNN) + //convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output, + // l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr); + + // // then exit from if() + + + im2col_cpu_custom((float *)l.bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); + //im2col_cpu((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b); + + //free(bin_re_packed_input); + + int new_k = l.size*l.size*l.c / 32; + + // good for (l.c == 64) + //gemm_nn_bin_32bit_packed(m, n, new_k, 1, + // l.align_bit_weights, l.new_lda/32, + // b, n, + // c, n, l.mean_arr); + + // // then exit from if() + + transpose_uint32((uint32_t *)state.workspace, (uint32_t*)l.t_bit_input, new_k, n, n, new_ldb); + + // the main GEMM function + gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr); + + // // alternative GEMM + //gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1, + // l.align_bit_weights, l.new_lda/32, + // t_bit_input, new_ldb / 32, + // c, n, l.mean_arr); + + //free(t_bit_input); + + } + else + { // else (l.c % 32 != 0) + + //-------------------------------------------------------- + //printf(" l.index = %d - old XNOR \n", l.index); + + //im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align); + im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align); + + //size_t output_size = l.outputs; + //float *count_output = calloc(output_size, sizeof(float)); + //size_t bit_output_size = output_size / 8 + 1; + //char *bit_output = calloc(bit_output_size, sizeof(char)); + + //size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col() + //size_t bit_input_size = intput_size / 8 + 1; + //char *bit_input = calloc(bit_input_size, sizeof(char)); + + //size_t weights_size = k * m; //l.size*l.size*l.c*l.n; // l.nweights + //size_t bit_weights_size = weights_size / 8 + 1; + + //char *bit_weights = calloc(bit_weights_size, sizeof(char)); + //float *mean_arr = calloc(l.n, sizeof(float)); + + // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits) + { + //size_t ldb_align = 256; // 256 bit for AVX2 + int ldb_align = l.lda_align; + size_t new_ldb = k + (ldb_align - k%ldb_align); + size_t t_intput_size = binary_transpose_align_input(k, n, state.workspace, &l.t_bit_input, ldb_align, l.bit_align); + + // 5x times faster than gemm()-float32 + gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr); + + //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr); + + //free(t_input); + //free(t_bit_input); + //} + } + + } + + add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); + + //activate_array(l.output, m*n*l.batch, l.activation); + if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else if (l.activation == HARD_MISH) activate_array_hard_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output); + else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 0); + else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 1); + else activate_array_cpu_custom(l.output, m*n*l.batch, l.activation); + return; + + } + else { + //printf(" l.index = %d - FP32 \n", l.index); + float *im = state.input + (i*l.groups + j)*(l.c / l.groups)*l.h*l.w; + if (l.size == 1 && l.stride == 1 && l.dilation == 1) { + b = im; + } + else { + //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b); + + im2col_cpu_ext(im, // input + l.c / l.groups, // input channels + l.h, l.w, // input size (h, w) + l.size, l.size, // kernel size (h, w) + l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) + l.stride_y, l.stride_x, // stride (h, w) + l.dilation, l.dilation, // dilation (h, w) + b); // output + + } + + gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n); + // bit-count to float + } + //c += n*m; + //state.input += l.c*l.h*l.w; + } + } + + if(l.batch_normalize){ + forward_batchnorm_layer(l, state); + } + else { + add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w); + } + + //activate_array(l.output, m*n*l.batch, l.activation); + if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else if (l.activation == HARD_MISH) activate_array_hard_mish(l.output, l.outputs*l.batch, l.activation_input, l.output); + else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output); + else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 0); + else if (l.activation == NORM_CHAN_SOFTMAX_MAXVAL) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output, 1); + else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation); + + if(l.binary || l.xnor) swap_binary(&l); + + //visualize_convolutional_layer(l, "conv_visual", NULL); + //wait_until_press_key_cv(); + + if(l.assisted_excitation && state.train) assisted_excitation_forward(l, state); + + if (l.antialiasing) { + network_state s = { 0 }; + s.train = state.train; + s.workspace = state.workspace; + s.net = state.net; + s.input = l.output; + forward_convolutional_layer(*(l.input_layer), s); + //simple_copy_ongpu(l.outputs*l.batch, l.output, l.input_antialiasing); + memcpy(l.output, l.input_layer->output, l.input_layer->outputs * l.input_layer->batch * sizeof(float)); + } +} + +void assisted_excitation_forward(convolutional_layer l, network_state state) +{ + const int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions); + + // epoch + //const float epoch = (float)(*state.net.seen) / state.net.train_images_num; + + // calculate alpha + //const float alpha = (1 + cos(3.141592 * iteration_num)) / (2 * state.net.max_batches); + //const float alpha = (1 + cos(3.141592 * epoch)) / (2 * state.net.max_batches); + float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches)); + + if (l.assisted_excitation > 1) { + if (iteration_num > l.assisted_excitation) alpha = 0; + else alpha = (1 + cos(3.141592 * iteration_num / l.assisted_excitation)); + } + + //printf("\n epoch = %f, alpha = %f, seen = %d, max_batches = %d, train_images_num = %d \n", + // epoch, alpha, (*state.net.seen), state.net.max_batches, state.net.train_images_num); + + float *a_avg = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float)); + float *g = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float)); + + int b; + int w, h, c; + + l.max_boxes = state.net.num_boxes; + l.truths = l.max_boxes*(4 + 1); + + for (b = 0; b < l.batch; ++b) + { + // calculate G + int t; + for (t = 0; t < state.net.num_boxes; ++t) { + box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); + if (!truth.x) break; // continue; + + int left = floor((truth.x - truth.w / 2) * l.out_w); + int right = ceil((truth.x + truth.w / 2) * l.out_w); + int top = floor((truth.y - truth.h / 2) * l.out_h); + int bottom = ceil((truth.y + truth.h / 2) * l.out_h); + + for (w = left; w <= right; w++) { + for (h = top; h < bottom; h++) { + g[w + l.out_w * h + l.out_w*l.out_h*b] = 1; + } + } + } + } + + for (b = 0; b < l.batch; ++b) + { + // calculate average A + for (w = 0; w < l.out_w; w++) { + for (h = 0; h < l.out_h; h++) { + for (c = 0; c < l.out_c; c++) { + a_avg[w + l.out_w*(h + l.out_h*b)] += l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))]; + } + a_avg[w + l.out_w*(h + l.out_h*b)] /= l.out_c; // a_avg / d + } + } + } + + // change activation + for (b = 0; b < l.batch; ++b) + { + for (w = 0; w < l.out_w; w++) { + for (h = 0; h < l.out_h; h++) { + for (c = 0; c < l.out_c; c++) + { + // a = a + alpha(t) + e(c,i,j) = a + alpha(t) + g(i,j) * avg_a(i,j) / channels + l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] += + alpha * + g[w + l.out_w*(h + l.out_h*b)] * + a_avg[w + l.out_w*(h + l.out_h*b)]; + + //l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] = + // alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)]; + } + } + } + } + + if(0) // visualize ground truth + { +#ifdef OPENCV + for (b = 0; b < l.batch; ++b) + { + image img = float_to_image(l.out_w, l.out_h, 1, &g[l.out_w*l.out_h*b]); + char buff[100]; + sprintf(buff, "a_excitation_%d", b); + show_image_cv(img, buff); + + image img2 = float_to_image(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]); + char buff2[100]; + sprintf(buff2, "a_excitation_act_%d", b); + show_image_cv(img2, buff2); + wait_key_cv(5); + } + wait_until_press_key_cv(); +#endif // OPENCV + } + + free(g); + free(a_avg); +} + + +void backward_convolutional_layer(convolutional_layer l, network_state state) +{ + int i, j; + int m = l.n / l.groups; + int n = l.size*l.size*l.c / l.groups; + int k = l.out_w*l.out_h; + + if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta); + else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta); + else if (l.activation == HARD_MISH) gradient_array_hard_mish(l.outputs*l.batch, l.activation_input, l.delta); + else if (l.activation == NORM_CHAN_SOFTMAX || l.activation == NORM_CHAN_SOFTMAX_MAXVAL) gradient_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta); + else if (l.activation == NORM_CHAN) gradient_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta); + else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); + + if (l.batch_normalize) { + backward_batchnorm_layer(l, state); + } + else { + backward_bias(l.bias_updates, l.delta, l.batch, l.n, k); + } + + for (i = 0; i < l.batch; ++i) { + for (j = 0; j < l.groups; ++j) { + float *a = l.delta + (i*l.groups + j)*m*k; + float *b = state.workspace; + float *c = l.weight_updates + j*l.nweights / l.groups; + + float *im = state.input + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w; + + //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b); + im2col_cpu_ext( + im, // input + l.c / l.groups, // input channels + l.h, l.w, // input size (h, w) + l.size, l.size, // kernel size (h, w) + l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) + l.stride_y, l.stride_x, // stride (h, w) + l.dilation, l.dilation, // dilation (h, w) + b); // output + + gemm(0, 1, m, n, k, 1, a, k, b, k, 1, c, n); + + if (state.delta) { + a = l.weights + j*l.nweights / l.groups; + b = l.delta + (i*l.groups + j)*m*k; + c = state.workspace; + + gemm(1, 0, n, k, m, 1, a, n, b, k, 0, c, k); + + //col2im_cpu(state.workspace, l.c / l.groups, l.h, l.w, l.size, l.stride, + // l.pad, state.delta + (i*l.groups + j)*l.c / l.groups*l.h*l.w); + + col2im_cpu_ext( + state.workspace, // input + l.c / l.groups, // input channels (h, w) + l.h, l.w, // input size (h, w) + l.size, l.size, // kernel size (h, w) + l.pad * l.dilation, l.pad * l.dilation, // padding (h, w) + l.stride_y, l.stride_x, // stride (h, w) + l.dilation, l.dilation, // dilation (h, w) + state.delta + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w); // output (delta) + } + } + } +} + +void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate_init, float momentum, float decay) +{ + float learning_rate = learning_rate_init*l.learning_rate_scale; + //float momentum = a.momentum; + //float decay = a.decay; + //int batch = a.batch; + + axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1); + axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1); + scal_cpu(l.nweights, momentum, l.weight_updates, 1); + + axpy_cpu(l.n, learning_rate / batch, l.bias_updates, 1, l.biases, 1); + scal_cpu(l.n, momentum, l.bias_updates, 1); + + if (l.scales) { + axpy_cpu(l.n, learning_rate / batch, l.scale_updates, 1, l.scales, 1); + scal_cpu(l.n, momentum, l.scale_updates, 1); + } +} + + + +image get_convolutional_weight(convolutional_layer l, int i) +{ + int h = l.size; + int w = l.size; + int c = l.c / l.groups; + return float_to_image(w, h, c, l.weights + i*h*w*c); +} + +void rgbgr_weights(convolutional_layer l) +{ + int i; + for (i = 0; i < l.n; ++i) { + image im = get_convolutional_weight(l, i); + if (im.c == 3) { + rgbgr_image(im); + } + } +} + +void rescale_weights(convolutional_layer l, float scale, float trans) +{ + int i; + for (i = 0; i < l.n; ++i) { + image im = get_convolutional_weight(l, i); + if (im.c == 3) { + scale_image(im, scale); + float sum = sum_array(im.data, im.w*im.h*im.c); + l.biases[i] += sum*trans; + } + } +} + +image *get_weights(convolutional_layer l) +{ + image *weights = (image *)xcalloc(l.n, sizeof(image)); + int i; + for (i = 0; i < l.n; ++i) { + weights[i] = copy_image(get_convolutional_weight(l, i)); + normalize_image(weights[i]); + /* + char buff[256]; + sprintf(buff, "filter%d", i); + save_image(weights[i], buff); + */ + } + //error("hey"); + return weights; +} + +image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights) +{ + image *single_weights = get_weights(l); + show_images(single_weights, l.n, window); + + image delta = get_convolutional_image(l); + image dc = collapse_image_layers(delta, 1); + char buff[256]; + sprintf(buff, "%s: Output", window); + show_image(dc, buff); + //save_image(dc, buff); + free_image(dc); + return single_weights; +} + -- Gitblit v1.8.0