From 59efae1b9cb90479b6faaa904463f5539fcc25f9 Mon Sep 17 00:00:00 2001 From: Scheaven <xuepengqiang> Date: 星期四, 03 六月 2021 16:26:28 +0800 Subject: [PATCH] add m --- lib/detecter_tools/darknet/blas_kernels.cu | 4785 ++++++++++++++++++++++++++++++---------------------------- 1 files changed, 2,473 insertions(+), 2,312 deletions(-) diff --git a/lib/detecter_tools/darknet/blas_kernels.cu b/lib/detecter_tools/darknet/blas_kernels.cu index a168684..85c55ad 100644 --- a/lib/detecter_tools/darknet/blas_kernels.cu +++ b/lib/detecter_tools/darknet/blas_kernels.cu @@ -1,2312 +1,2473 @@ -#include <cuda_runtime.h> -#include <curand.h> -#include <cublas_v2.h> -#include <assert.h> -#include <float.h> - -#include "blas.h" -#include "dark_cuda.h" -#include "utils.h" -#include "tree.h" - -__inline__ __device__ -float warpAllReduceSum(float val) { - for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) -#if CUDART_VERSION >= 9000 - val += __shfl_xor_sync(0xffffffff, val, mask); -#else - val += __shfl_xor(val, mask); -#endif - return val; -} - -__global__ void compare_2_arrays_kernel(float *one, float *two, int size) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index >= size) return; - - const float diff = 100 * fabs(one[index] - two[index]) / fabs(one[index]); - - if (diff > 10) printf(" i: %d - one = %f, two = %f, diff = %f %% \n", index, one[index], two[index], diff); -} - -void compare_2_arrays_gpu(float *one, float *two, int size) -{ - const int num_blocks = get_number_of_blocks(size, BLOCK); - - compare_2_arrays_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(one, two, size); - CHECK_CUDA(cudaPeekAtLastError()); - CHECK_CUDA(cudaDeviceSynchronize()); -} - -__global__ void mean_array_kernel(float *src, int size, float alpha, float *avg) -{ - const int i = blockIdx.x*blockDim.x + threadIdx.x; - if (i >= size) return; - - avg[i] = avg[i] * (1 - alpha) + src[i] * alpha; - src[i] = avg[i]; -} - - -void mean_array_gpu(float *src, int size, float alpha, float *avg) -{ - const int num_blocks = get_number_of_blocks(size, BLOCK); - - mean_array_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(src, size, alpha, avg); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void scale_bias_kernel(float *output, float *scale, int batch, int filters, int spatial, int current_size) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index >= current_size) return; - - int f = (index / spatial) % filters; - output[index] *= scale[f]; -} - -void scale_bias_gpu(float *output, float *scale, int batch, int filters, int spatial) -{ - const int current_size = batch * filters * spatial; - const int num_blocks = get_number_of_blocks(current_size, BLOCK); - - scale_bias_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(output, scale, batch, filters, spatial, current_size); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) -{ - __shared__ float part[BLOCK]; - int i,b; - int filter = blockIdx.x; - int p = threadIdx.x; - float sum = 0; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; i += BLOCK){ - int index = p + i + size*(filter + n*b); - sum += (p+i < size) ? delta[index]*x_norm[index] : 0; - } - } - part[p] = sum; - __syncthreads(); - if (p == 0) { - for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i]; - } -} - -void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) -{ - backward_scale_kernel<<<n, BLOCK, 0, get_cuda_stream() >>>(x_norm, delta, batch, n, size, scale_updates); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void add_bias_kernel(float *output, float *biases, int batch, int filters, int spatial, int current_size) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index >= current_size) return; - - int f = (index / spatial) % filters; - output[index] += biases[f]; -} - -void add_bias_gpu(float *output, float *biases, int batch, int filters, int spatial) -{ - const int current_size = batch * filters * spatial; - const int num_blocks = get_number_of_blocks(current_size, BLOCK); - - add_bias_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(output, biases, batch, filters, spatial, current_size); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size) -{ - __shared__ float part[BLOCK]; - int i,b; - int filter = blockIdx.x; - int p = threadIdx.x; - float sum = 0; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; i += BLOCK){ - int index = p + i + size*(filter + n*b); - sum += (p+i < size) ? delta[index] : 0; - } - } - part[p] = sum; - __syncthreads(); - if (p == 0) { - for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; - } -} - -/* -__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta) -{ - int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - int f1 = index / n; - int f2 = index % n; - if (f2 <= f1) return; - - float sum = 0; - float norm1 = 0; - float norm2 = 0; - int b, i; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; ++i){ - int i1 = b * size * n + f1 * size + i; - int i2 = b * size * n + f2 * size + i; - sum += output[i1] * output[i2]; - norm1 += output[i1] * output[i1]; - norm2 += output[i2] * output[i2]; - } - } - norm1 = sqrt(norm1); - norm2 = sqrt(norm2); - float norm = norm1 * norm2; - sum = sum / norm; - for(b = 0; b < batch; ++b){ - for(i = 0; i < size; ++i){ - int i1 = b * size * n + f1 * size + i; - int i2 = b * size * n + f2 * size + i; - delta[i1] += - scale * sum * output[i2] / norm; - delta[i2] += - scale * sum * output[i1] / norm; - } - } -} - -void dot_error_gpu(layer l) -{ - dot_kernel<<<cuda_gridsize(l.n*l.n), BLOCK, 0, get_cuda_stream()>>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu); - CHECK_CUDA(cudaPeekAtLastError()); -} -*/ - -void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) -{ - backward_bias_kernel<<<n, BLOCK, 0, get_cuda_stream() >>>(bias_updates, delta, batch, n, size); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t) -{ - int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (index >= N) return; - - float mhat = m[index] / (1.f - powf(B1, t)); - float vhat = v[index] / (1.f - powf(B2, t)); - - x[index] = x[index] + rate * mhat / (sqrtf(vhat) + eps); -} - -extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t) -{ - adam_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(n, x, m, v, B1, B2, rate, eps, t); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t) -{ - scal_ongpu(n, B1, m, 1); - scal_ongpu(n, B2, v, 1); - axpy_ongpu(n, -decay*batch, w, 1, d, 1); - - axpy_ongpu(n, (1 - B1), d, 1, m, 1); - mul_ongpu(n, d, 1, d, 1); - axpy_ongpu(n, (1 - B2), d, 1, v, 1); - - adam_gpu(n, w, m, v, B1, B2, rate, eps, t); - fill_ongpu(n, 0, d, 1); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index >= N) return; - int f = (index / spatial) % filters; - - x[index] = (x[index] - mean[f]) / (sqrtf(variance[f] + .00001f)); -} - -extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) -{ - const int current_size = batch * filters * spatial; - const int num_blocks = get_number_of_blocks(current_size, BLOCK); - - normalize_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(current_size, x, mean, variance, batch, filters, spatial); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) -{ - int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (index >= N) return; - int f = (index/spatial)%filters; - - delta[index] = delta[index] * 1.F/(sqrtf(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); -} - -extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) -{ - size_t N = batch*filters*spatial; - normalize_delta_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i >= filters) return; - int j,k; - variance_delta[i] = 0; - for(j = 0; j < batch; ++j){ - for(k = 0; k < spatial; ++k){ - int index = j*filters*spatial + i*spatial + k; - variance_delta[i] += delta[index]*(x[index] - mean[i]); - } - } - variance_delta[i] *= -.5 * powf(variance[i] + .000001f, (float)(-3./2.)); -} - -__global__ void accumulate_kernel(float *x, int n, int groups, float *sum) -{ - int k; - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i >= groups) return; - sum[i] = 0; - for(k = 0; k < n; ++k){ - sum[i] += x[k*groups + i]; - } -} - -__global__ void fast_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) -{ - const int threads = BLOCK; - __shared__ float local[threads]; - - int id = threadIdx.x; - local[id] = 0; - - int filter = blockIdx.x; - - int i, j; - for(j = 0; j < batch; ++j){ - for(i = 0; i < spatial; i += threads){ - int index = j*spatial*filters + filter*spatial + i + id; - local[id] += (i+id < spatial) ? delta[index] : 0; - } - } - __syncthreads(); - - if(id == 0){ - mean_delta[filter] = 0; - for(i = 0; i < threads; ++i){ - mean_delta[filter] += local[i]; - } - mean_delta[filter] *= (-1.F/sqrtf(variance[filter] + .000001f)); - } -} - -__global__ void fast_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) -{ - const int threads = BLOCK; - __shared__ float local[threads]; - - int id = threadIdx.x; - local[id] = 0; - - int filter = blockIdx.x; - - int i, j; - for(j = 0; j < batch; ++j){ - for(i = 0; i < spatial; i += threads){ - int index = j*spatial*filters + filter*spatial + i + id; - - local[id] += (i+id < spatial) ? delta[index]*(x[index] - mean[filter]) : 0; - } - } - __syncthreads(); - - if(id == 0){ - variance_delta[filter] = 0; - for(i = 0; i < threads; ++i){ - variance_delta[filter] += local[i]; - } - variance_delta[filter] *= -.5 * powf(variance[filter] + .000001f, (float)(-3./2.)); - } -} - - -__global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i >= filters) return; - int j,k; - mean_delta[i] = 0; - for (j = 0; j < batch; ++j) { - for (k = 0; k < spatial; ++k) { - int index = j*filters*spatial + i*spatial + k; - mean_delta[i] += delta[index]; - } - } - mean_delta[i] *= (-1.F/sqrtf(variance[i] + .000001f)); -} - -extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) -{ - mean_delta_kernel<<<cuda_gridsize(filters), BLOCK, 0, get_cuda_stream() >>>(delta, variance, batch, filters, spatial, mean_delta); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) -{ - fast_mean_delta_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(delta, variance, batch, filters, spatial, mean_delta); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) -{ - fast_variance_delta_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(x, delta, mean, variance, batch, filters, spatial, variance_delta); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean) -{ - float scale = 1.F/(batch * spatial); - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i >= filters) return; - int j,k; - mean[i] = 0; - for(j = 0; j < batch; ++j){ - for(k = 0; k < spatial; ++k){ - int index = j*filters*spatial + i*spatial + k; - mean[i] += x[index]; - } - } - mean[i] *= scale; -} - -__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) -{ - float scale = 1.F/(batch * spatial - 1); - int j,k; - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i >= filters) return; - variance[i] = 0; - for(j = 0; j < batch; ++j){ - for(k = 0; k < spatial; ++k){ - int index = j*filters*spatial + i*spatial + k; - variance[i] += powf((x[index] - mean[i]), 2); - } - } - variance[i] *= scale; -} - -__global__ void reorg_kernel(int N, float *x, int w, int h, int c, int batch, int stride, int forward, float *out) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i >= N) return; - int in_index = i; - int in_w = i%w; - i = i/w; - int in_h = i%h; - i = i/h; - int in_c = i%c; - i = i/c; - int b = i%batch; - - int out_c = c/(stride*stride); - - int c2 = in_c % out_c; - int offset = in_c / out_c; - int w2 = in_w*stride + offset % stride; - int h2 = in_h*stride + offset / stride; - //printf("%d\n", offset); - int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b)); - - // printf("%d %d %d\n", w2, h2, c2); - //printf("%d %d\n", in_index, out_index); - //if(out_index >= N || out_index < 0) printf("bad bad bad \n"); - - if(forward) out[out_index] = x[in_index]; - else out[in_index] = x[out_index]; - //if(forward) out[1] = x[1]; - //else out[0] = x[0]; -} - -__global__ void constrain_weight_updates_kernel(int N, float coef, float *weights_gpu, float *weight_updates_gpu) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < N) { - const float w = weights_gpu[i]; - const float wu = weight_updates_gpu[i]; - const float wu_sign = (wu == 0) ? 0 : (fabs(wu) / wu); - const float abs_limit = fabs(w * coef); - if (fabs(wu) > abs_limit) weight_updates_gpu[i] = abs_limit * wu_sign; - } -} - -extern "C" void constrain_weight_updates_ongpu(int N, float coef, float *weights_gpu, float *weight_updates_gpu) -{ - constrain_weight_updates_kernel << <cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >> >(N, coef, weights_gpu, weight_updates_gpu); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX]; -} - -__global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) Y[i*INCY] = powf(X[i*INCX], ALPHA); -} - -__global__ void const_kernel(int N, float ALPHA, float *X, int INCX) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) X[i*INCX] = ALPHA; -} - -__global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) X[i*INCX] = fminf(ALPHA, fmaxf(-ALPHA, X[i*INCX])); -} -__global__ void constrain_min_max_kernel(int N, float MIN, float MAX, float *X, int INCX) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < N) X[i*INCX] = fminf(MAX, fmaxf(MIN, X[i*INCX])); -} - -__global__ void supp_kernel(int N, float ALPHA, float *X, int INCX) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) { - if((X[i*INCX] * X[i*INCX]) < (ALPHA * ALPHA)) X[i*INCX] = 0; - } -} - -__global__ void scal_kernel(int N, float ALPHA, float *X, int INCX) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) X[i*INCX] *= ALPHA; -} - -__global__ void scal_add_kernel(int N, float ALPHA, float BETA, float *X, int INCX) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < N) X[i*INCX] = X[i*INCX] * ALPHA + BETA; -} - -__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index >= N) return; - X[index*INCX] = ALPHA; -} - -__global__ void mask_kernel_new_api(int n, float *x, float mask_num, float *mask, float val) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < n && mask[i] == mask_num) x[i] = val; -} - -__global__ void mask_kernel(int n, float *x, float mask_num, float *mask) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n && mask[i] == mask_num) x[i] = mask_num; -} - -__global__ void copy_kernel(int N, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) Y[i*INCY + OFFY] = X[i*INCX + OFFX]; -} - -__global__ void simple_copy_kernel(int size, float *src, float *dst) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) - dst[index] = src[index]; -} - -__global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < N) Y[i*INCY] *= X[i*INCX]; -} - - -__global__ void fast_mean_kernel(float *x, int batch, int filters, int spatial, float *mean) -{ - const int threads = BLOCK; - __shared__ float local[threads]; - - int id = threadIdx.x; - local[id] = 0; - - int filter = blockIdx.x; - - int i, j; - for(j = 0; j < batch; ++j){ - for(i = 0; i < spatial; i += threads){ - int index = j*spatial*filters + filter*spatial + i + id; - local[id] += (i+id < spatial) ? x[index] : 0; - } - } - __syncthreads(); - - if(id == 0){ - float mean_tmp = 0; - for(i = 0; i < threads; ++i){ - mean_tmp += local[i]; - } - mean_tmp /= spatial * batch; - mean[filter] = mean_tmp; - } -} - -extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean) -{ - fast_mean_kernel << <filters, BLOCK, 0, get_cuda_stream() >> >(x, batch, filters, spatial, mean); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void fast_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) -{ - const int threads = BLOCK; - __shared__ float local[threads]; - - int id = threadIdx.x; - local[id] = 0; - - int filter = blockIdx.x; - - int i, j; - for(j = 0; j < batch; ++j){ - for(i = 0; i < spatial; i += threads){ - int index = j*spatial*filters + filter*spatial + i + id; - - local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0; - } - } - __syncthreads(); - - if(id == 0){ - float variance_tmp = 0; - for(i = 0; i < threads; ++i){ - variance_tmp += local[i]; - } - variance_tmp /= (spatial * batch);// -1); - variance[filter] = variance_tmp; - } -} - -extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) -{ - fast_variance_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(x, mean, batch, filters, spatial, variance); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void fast_v_cbn_kernel(const float *x, float *mean, int batch, int filters, int spatial, int minibatch_index, int max_minibatch_index, float *m_avg, float *v_avg, float *variance, - const float alpha, float *rolling_mean_gpu, float *rolling_variance_gpu, int inverse_variance, float epsilon) -{ - const int threads = BLOCK; - __shared__ float local[threads]; - - int id = threadIdx.x; - local[id] = 0; - - int filter = blockIdx.x; - - int i, j; - for (j = 0; j < batch; ++j) { - for (i = 0; i < spatial; i += threads) { - int index = j*spatial*filters + filter*spatial + i + id; - - local[id] += (i + id < spatial) ? powf(x[index], 2) : 0; - } - } - __syncthreads(); - - if (id == 0) { - float v_tmp = 0; - v_tmp = 0; - for (i = 0; i < threads; ++i) { - v_tmp += local[i]; - } - v_tmp /= (spatial * batch - 1); - - v_tmp = fmax(v_tmp, powf(mean[filter], 2)); - - - const float alpha_cbn = 1.0f / minibatch_index; - - m_avg[filter] = alpha_cbn * mean[filter] + (1 - alpha_cbn) * m_avg[filter]; - mean[filter] = m_avg[filter]; - - v_avg[filter] = alpha_cbn * v_tmp + (1 - alpha_cbn) * v_avg[filter]; - - float variance_tmp = fmax(0.0f, v_avg[filter] - powf(m_avg[filter], 2)); - if (inverse_variance) variance[filter] = 1.0f / sqrtf(variance_tmp + epsilon); - else variance[filter] = variance_tmp; - - //if (max_minibatch_index == minibatch_index) - { - if(rolling_mean_gpu) rolling_mean_gpu[filter] = alpha * mean[filter] + (1 - alpha) * rolling_mean_gpu[filter]; - - if(rolling_variance_gpu) rolling_variance_gpu[filter] = alpha * variance_tmp + (1 - alpha) * rolling_variance_gpu[filter]; - } - } -} - -extern "C" void fast_v_cbn_gpu(const float *x, float *mean, int batch, int filters, int spatial, int minibatch_index, int max_minibatch_index, float *m_avg, float *v_avg, float *variance, - const float alpha, float *rolling_mean_gpu, float *rolling_variance_gpu, int inverse_variance, float epsilon) -{ - fast_v_cbn_kernel << <filters, BLOCK, 0, get_cuda_stream() >> >(x, mean, batch, filters, spatial, minibatch_index, max_minibatch_index, m_avg, v_avg, variance, alpha, rolling_mean_gpu, rolling_variance_gpu, inverse_variance, epsilon); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void inverse_variance_kernel(int size, float *src, float *dst, float epsilon) -{ - int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) - dst[index] = 1.0f / sqrtf(src[index] + epsilon); -} - -extern "C" void inverse_variance_ongpu(int size, float *src, float *dst, float epsilon) -{ - const int num_blocks = size / BLOCK + 1; - inverse_variance_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(size, src, dst, epsilon); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void normalize_scale_bias_kernel(int N, float *x, float *mean, float *variance, float *scales, float *biases, int batch, int filters, int spatial, int inverse_variance, float epsilon) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index >= N) return; - int f = (index / spatial) % filters; - - float val = 0; - if(inverse_variance) val = (x[index] - mean[f]) * variance[f]; - else val = (x[index] - mean[f]) / (sqrtf(variance[f] + epsilon)); - val *= scales[f]; - val += biases[f]; - - if (!isnan(val) && !isinf(val)) - x[index] = val; -} - -extern "C" void normalize_scale_bias_gpu(float *x, float *mean, float *variance, float *scales, float *biases, int batch, int filters, int spatial, int inverse_variance, float epsilon) -{ - const int current_size = batch * filters * spatial; - const int num_blocks = get_number_of_blocks(current_size, BLOCK); - - normalize_scale_bias_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(current_size, x, mean, variance, scales, biases, batch, filters, spatial, inverse_variance, epsilon); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean) -{ - mean_kernel<<<cuda_gridsize(filters), BLOCK, 0, get_cuda_stream() >>>(x, batch, filters, spatial, mean); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) -{ - variance_kernel<<<cuda_gridsize(filters), BLOCK, 0, get_cuda_stream() >>>(x, mean, batch, filters, spatial, variance); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY) -{ - axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY); -} - -extern "C" void pow_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY) -{ - pow_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX, Y, INCY); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY) -{ - axpy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY) -{ - copy_ongpu_offset(N, X, 0, INCX, Y, 0, INCY); -} - -extern "C" void simple_copy_ongpu(int size, float *src, float *dst) -{ - const int num_blocks = size / BLOCK + 1; - simple_copy_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(size, src, dst); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void memcpy_ongpu(void *dst, void *src, int size_bytes) -{ - CHECK_CUDA(cudaMemcpyAsync(dst, src, size_bytes, cudaMemcpyDefault, get_cuda_stream())); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void mul_ongpu(int N, float * X, int INCX, float * Y, int INCY) -{ - mul_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, INCX, Y, INCY); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY) -{ - copy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, X, OFFX, INCX, Y, OFFY, INCY); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void flatten_kernel(int N, float *x, int spatial, int layers, int batch, int forward, float *out) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i >= N) return; - int in_s = i%spatial; - i = i/spatial; - int in_c = i%layers; - i = i/layers; - int b = i; - - int i1 = b*layers*spatial + in_c*spatial + in_s; - int i2 = b*layers*spatial + in_s*layers + in_c; - - if (forward) out[i2] = x[i1]; - else out[i1] = x[i2]; -} - -extern "C" void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out) -{ - int size = spatial*batch*layers; - flatten_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, spatial, layers, batch, forward, out); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out) -{ - int size = w*h*c*batch; - reorg_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, w, h, c, batch, stride, forward, out); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void mask_gpu_new_api(int N, float * X, float mask_num, float * mask, float val) -{ - mask_kernel_new_api <<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, mask_num, mask, val); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask) -{ - mask_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, mask_num, mask); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void const_ongpu(int N, float ALPHA, float * X, int INCX) -{ - const_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void constrain_ongpu(int N, float ALPHA, float * X, int INCX) -{ - constrain_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void constrain_min_max_ongpu(int N, float MIN, float MAX, float * X, int INCX) -{ - constrain_min_max_kernel << <cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >> >(N, MIN, MAX, X, INCX); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX) -{ - scal_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void scal_add_ongpu(int N, float ALPHA, float BETA, float * X, int INCX) -{ - scal_add_kernel << <cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >> >(N, ALPHA, BETA, X, INCX); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void supp_ongpu(int N, float ALPHA, float * X, int INCX) -{ - supp_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX); - CHECK_CUDA(cudaPeekAtLastError()); -} - -extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX) -{ - //fill_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX); - //CHECK_CUDA(cudaPeekAtLastError()); - fill_kernel << <get_number_of_blocks(N, BLOCK), BLOCK, 0, get_cuda_stream() >> >(N, ALPHA, X, INCX); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void gradient_centralization_kernel(int filters, int f_size, float *in) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - const int tid = index % WARP_SIZE; - const int f = index / WARP_SIZE; - - if (f >= filters) return; - - float mean = 0; - for (int i = 0; i < f_size; i += WARP_SIZE) { - mean += warpAllReduceSum(in[f*f_size + i + tid]); - } - mean = mean / f_size; - for (int i = 0; i < f_size; i += WARP_SIZE) { - in[f*f_size + i + tid] -= mean; - } - -} - -extern "C" void gradient_centralization_gpu(int w, int h, int c, int f, float *in) -{ - const int size = f * WARP_SIZE; - const int f_size = c * h * w; - if (f_size % WARP_SIZE == 0) { - - gradient_centralization_kernel << <get_number_of_blocks(size, BLOCK), BLOCK, 0, get_cuda_stream() >> > (f, f_size, in); - CHECK_CUDA(cudaPeekAtLastError()); - } -} - -__device__ float relu(float src) { - if (src > 0) return src; - return 0; -} - -__device__ float lrelu(float src) { - const float eps = 0.001; - if (src > eps) return src; - return eps; -} - -__device__ float grad_relu(float src) { - return (src > 0); -} - -__device__ float grad_lrelu(float src) { - const float eps = 0.001; - return (src > eps); -} - -__global__ void shortcut_singlelayer_simple_kernel(int size, int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) -{ - const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= size) return; - - int src_id = id; - const int src_i = src_id % src_outputs; - src_id /= src_outputs; - int src_b = src_id; - - float out_val = in[id]; - - int add_outputs = outputs_of_layers_gpu[0]; - if (src_i < add_outputs) { - int add_index = add_outputs*src_b + src_i; - - float *add = layers_output_gpu[0]; - out_val += add[add_index]; - } - out[id] = out_val; -} - -__global__ void shortcut_multilayer_kernel(int size, int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) -{ - const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= size) return; - - // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) - const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) - int step = 0; - if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 - - int src_id = id; - const int src_i = src_id % src_outputs; - src_id /= src_outputs; - int src_b = src_id; - - float sum = 1, max_val = -FLT_MAX; - if (weights_gpu && weights_normalization) { - if (weights_normalization == SOFTMAX_NORMALIZATION) { - for (int i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - const float w = weights_gpu[weights_index]; - if (max_val < w) max_val = w; - } - } - const float eps = 0.0001; - sum = eps; - for (int i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - const float w = weights_gpu[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) sum += lrelu(w); - else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); - } - } - - float out_val = 0; - - if (weights_gpu) { - float w = weights_gpu[src_i / step]; - if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - out_val = in[id] * w; // [0 or c or (c, h ,w)] - } - else out_val = in[id]; - - // layers - for (int i = 0; i < n; ++i) { - int add_outputs = outputs_of_layers_gpu[i]; - if (src_i < add_outputs) { - int add_index = add_outputs*src_b + src_i; - - float *add = layers_output_gpu[i]; - - if (weights_gpu) { - const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] - float w = weights_gpu[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - out_val += add[add_index] * w; // [0 or c or (c, h ,w)] - } - else out_val += add[add_index]; - } - } - out[id] = out_val; -} - -extern "C" void shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) -{ - //printf(" src_outputs = %d, batch = %d, n = %d \n", src_outputs, batch, n); - int size = batch * src_outputs; - if (nweights == 0 && n == 1) { - shortcut_singlelayer_simple_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, src_outputs, batch, n, outputs_of_layers_gpu, layers_output_gpu, out, in, weights_gpu, nweights, weights_normalization); - } - else { - shortcut_multilayer_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, src_outputs, batch, n, outputs_of_layers_gpu, layers_output_gpu, out, in, weights_gpu, nweights, weights_normalization); - } - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void backward_shortcut_multilayer_kernel(int size, int src_outputs, int batch, int n, int *outputs_of_layers_gpu, - float **layers_delta_gpu, float *delta_out, float *delta_in, float *weights_gpu, float *weight_updates_gpu, int nweights, float *in, float **layers_output_gpu, WEIGHTS_NORMALIZATION_T weights_normalization) -{ - const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= size) return; - - // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) - const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) - int step = 0; - if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 - - int src_id = id; - const int src_i = src_id % src_outputs; - src_id /= src_outputs; - int src_b = src_id; - - float grad = 1, sum = 1, max_val = -FLT_MAX; - int i; - if (weights_gpu && weights_normalization) { - if (weights_normalization == SOFTMAX_NORMALIZATION) { - for (int i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - float w = weights_gpu[weights_index]; - if (max_val < w) max_val = w; - } - } - const float eps = 0.0001; - sum = eps; - for (i = 0; i < (n + 1); ++i) { - const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] - const float w = weights_gpu[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) sum += lrelu(w); - else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); - } - - } - - if (weights_gpu) { - float w = weights_gpu[src_i / step]; - if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - if (weights_normalization == RELU_NORMALIZATION) grad = w; - else if (weights_normalization == SOFTMAX_NORMALIZATION) grad = w*(1-w); - - delta_out[id] += delta_in[id] * w; // [0 or c or (c, h ,w)] - float weights_update_tmp = delta_in[id] * in[id] * grad;// / step; - - if (layer_step == 1 && (size/32) > (id/32 + 1)) { - if (isnan(weights_update_tmp) || isinf(weights_update_tmp)) { - weights_update_tmp = 0; - } - float wu = warpAllReduceSum(weights_update_tmp); - if (threadIdx.x % 32 == 0) { - if (!isnan(wu) && !isinf(wu)) - atomicAdd(&weight_updates_gpu[src_i / step], wu); - } - } - else { - if (!isnan(weights_update_tmp) && !isinf(weights_update_tmp)) - atomicAdd(&weight_updates_gpu[src_i / step], weights_update_tmp); - //weight_updates_gpu[src_i / step] += weights_update_tmp; - } - } - else delta_out[id] += delta_in[id]; - - // layers - for (int i = 0; i < n; ++i) { - int add_outputs = outputs_of_layers_gpu[i]; - if (src_i < add_outputs) { - int add_index = add_outputs*src_b + src_i; - int out_index = id; - - float *layer_delta = layers_delta_gpu[i]; - if (weights_gpu) { - float *add = layers_output_gpu[i]; - - const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] - float w = weights_gpu[weights_index]; - if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; - else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; - - if (weights_normalization == RELU_NORMALIZATION) grad = w; - else if (weights_normalization == SOFTMAX_NORMALIZATION) grad = w*(1 - w); - - layer_delta[add_index] += delta_in[id] * w; - float weights_update_tmp = delta_in[id] * add[add_index] * grad;// / step; - - if (layer_step == 1 && (size / 32) > (id / 32 + 1)) { - if (isnan(weights_update_tmp) || isinf(weights_update_tmp)) { - weights_update_tmp = 0; - } - float wu = warpAllReduceSum(weights_update_tmp); - if (threadIdx.x % 32 == 0) { - if (!isnan(wu) && !isinf(wu)) - atomicAdd(&weight_updates_gpu[weights_index], wu); - //if(weights_gpu[weights_index] != 1) printf(" wu = %f, weights_update_tmp = %f, w = %f, weights_gpu[weights_index] = %f, grad = %f, weights_normalization = %d ", - // wu, weights_update_tmp, w, weights_gpu[weights_index], grad, weights_normalization); - } - } - else { - if (!isnan(weights_update_tmp) && !isinf(weights_update_tmp)) - atomicAdd(&weight_updates_gpu[weights_index], weights_update_tmp); - //weight_updates_gpu[weights_index] += weights_update_tmp; - } - } - else layer_delta[add_index] += delta_in[id]; - } - } -} - -extern "C" void backward_shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, - float **layers_delta_gpu, float *delta_out, float *delta_in, float *weights_gpu, float *weight_updates_gpu, int nweights, float *in, float **layers_output_gpu, WEIGHTS_NORMALIZATION_T weights_normalization) -{ - const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) - int step = 0; - if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 - //printf(" nweights = %d, n = %d, layer_step = %d, step = %d \n", nweights, n, layer_step, step); - - //printf(" src_outputs = %d, batch = %d, n = %d \n", src_outputs, batch, n); - int size = batch * src_outputs; - backward_shortcut_multilayer_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, src_outputs, batch, n, outputs_of_layers_gpu, - layers_delta_gpu, delta_out, delta_in, weights_gpu, weight_updates_gpu, nweights, in, layers_output_gpu, weights_normalization); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void shortcut_kernel(int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) -{ - int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= size) return; - int i = id % minw; - id /= minw; - int j = id % minh; - id /= minh; - int k = id % minc; - id /= minc; - int b = id % batch; - - int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); - int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); - out[out_index] += add[add_index]; -} - -extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) -{ - int minw = (w1 < w2) ? w1 : w2; - int minh = (h1 < h2) ? h1 : h2; - int minc = (c1 < c2) ? c1 : c2; - - int stride = w1/w2; - int sample = w2/w1; - assert(stride == h1/h2); - assert(sample == h2/h1); - if(stride < 1) stride = 1; - if(sample < 1) sample = 1; - - int size = batch * minw * minh * minc; - shortcut_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void simple_input_shortcut_kernel(float *in, int size, float *add, float *out) -{ - int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= size) return; - - out[id] = in[id] + add[id]; -} - -__global__ void input_shortcut_kernel(float *in, int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) -{ - int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= size) return; - int i = id % minw; - id /= minw; - int j = id % minh; - id /= minh; - int k = id % minc; - id /= minc; - int b = id % batch; - - int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); - int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); - out[out_index] = in[out_index] + add[add_index]; -} - -extern "C" void input_shortcut_gpu(float *in, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) -{ - if (w1 == w2 && h1 == h2 && c1 == c2) { - int size = batch * w1 * h1 * c1; - simple_input_shortcut_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(in, size, add, out); - CHECK_CUDA(cudaPeekAtLastError()); - return; - } - - int minw = (w1 < w2) ? w1 : w2; - int minh = (h1 < h2) ? h1 : h2; - int minc = (c1 < c2) ? c1 : c2; - - int stride = w1 / w2; - int sample = w2 / w1; - assert(stride == h1 / h2); - assert(sample == h2 / h1); - if (stride < 1) stride = 1; - if (sample < 1) sample = 1; - - int size = batch * minw * minh * minc; - //input_shortcut_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(in, size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out); - simple_copy_ongpu(w2 * h2 * c2 * batch, in, out); - shortcut_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta, float *error) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n){ - float diff = truth[i] - pred[i]; - float abs_val = abs(diff); - if(abs_val < 1) { - error[i] = diff * diff; - delta[i] = diff; - } - else { - error[i] = 2*abs_val - 1; - delta[i] = (diff < 0) ? -1 : 1; - } - } -} - -extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error) -{ - smooth_l1_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(n, pred, truth, delta, error); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void softmax_x_ent_kernel(int n, float *pred, float *truth, float *delta, float *error) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i < n) { - float t = truth[i]; - float p = pred[i]; - error[i] = (t) ? -log(p) : 0; - delta[i] = t - p; - } -} - -extern "C" void softmax_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error) -{ - softmax_x_ent_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(n, pred, truth, delta, error); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void l2_kernel(int n, float *pred, float *truth, float *delta, float *error) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n){ - float diff = truth[i] - pred[i]; - error[i] = diff * diff; //I know this is technically wrong, deal with it. - delta[i] = diff; - } -} - -extern "C" void l2_gpu(int n, float *pred, float *truth, float *delta, float *error) -{ - l2_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(n, pred, truth, delta, error); - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void weighted_sum_kernel(int n, float *a, float *b, float *s, float *c) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n){ - c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); - } -} - -extern "C" void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c) -{ - weighted_sum_kernel<<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(num, a, b, s, c); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void weighted_delta_kernel(int n, float *a, float *b, float *s, float *da, float *db, float *ds, float *dc) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n){ - if(da) da[i] += dc[i] * s[i]; - db[i] += dc[i] * (1-s[i]); - ds[i] += dc[i] * a[i] + dc[i] * -b[i]; - } -} - -extern "C" void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc) -{ - weighted_delta_kernel<<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(num, a, b, s, da, db, ds, dc); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void mult_add_into_kernel(int n, float *a, float *b, float *c) -{ - int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(i < n){ - c[i] += a[i]*b[i]; - } -} - -extern "C" void mult_add_into_gpu(int num, float *a, float *b, float *c) -{ - mult_add_into_kernel<<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(num, a, b, c); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__device__ void softmax_device(int n, float *input, float temp, float *output) -{ - int i; - float sum = 0; - float largest = -INFINITY; - for(i = 0; i < n; ++i){ - int val = input[i]; - largest = (val>largest) ? val : largest; - } - for(i = 0; i < n; ++i){ - float e = exp(input[i]/temp - largest/temp); - sum += e; - output[i] = e; - } - for(i = 0; i < n; ++i){ - output[i] /= sum; - } -} - -__global__ void softmax_kernel(int n, int offset, int batch, float *input, float temp, float *output) -{ - int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if(b >= batch) return; - softmax_device(n, input + b*offset, temp, output + b*offset); -} - -extern "C" void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output) -{ - int inputs = n; - int batch = groups; - softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__device__ void softmax_device_new_api(float *input, int n, float temp, int stride, float *output) -{ - int i; - float sum = 0; - float largest = -INFINITY; - for (i = 0; i < n; ++i) { - int val = input[i*stride]; - largest = (val>largest) ? val : largest; - } - for (i = 0; i < n; ++i) { - float e = expf(input[i*stride] / temp - largest / temp); - sum += e; - output[i*stride] = e; - } - for (i = 0; i < n; ++i) { - output[i*stride] /= sum; - } -} - -__global__ void softmax_kernel_new_api(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) -{ - int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= batch*groups) return; - int b = id / groups; - int g = id % groups; - softmax_device_new_api(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset); -} - -extern "C" void softmax_gpu_new_api(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) -{ - softmax_kernel_new_api << <cuda_gridsize(batch*groups), BLOCK, 0, get_cuda_stream() >> >(input, n, batch, batch_offset, groups, group_offset, stride, temp, output); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) -{ - size_t i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (i >= N) return; - int out_index = i; - int out_w = i % (w*stride); - i = i / (w*stride); - int out_h = i % (h*stride); - i = i / (h*stride); - int out_c = i%c; - i = i / c; - int b = i%batch; - - int in_w = out_w / stride; - int in_h = out_h / stride; - int in_c = out_c; - - int in_index = b*w*h*c + in_c*w*h + in_h*w + in_w; - - - if (forward) out[out_index] += scale * x[in_index]; - else atomicAdd(x + in_index, scale * out[out_index]); -} - -extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) -{ - size_t size = w*h*c*batch*stride*stride; - upsample_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(size, in, w, h, c, batch, stride, forward, scale, out); - CHECK_CUDA(cudaPeekAtLastError()); -} - -__global__ void softmax_tree_kernel(float *input, int spatial, int batch, int stride, float temp, float *output, int groups, int *group_size, int *group_offset) -{ - int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; - if (id >= spatial*batch*groups) return; - int s = id % spatial; - id = id / spatial; - int g = id % groups; - int b = id / groups; - int goff = group_offset[g] * spatial; - int boff = b*stride; - softmax_device_new_api(input + goff + boff + s, group_size[g], temp, spatial, output + goff + boff + s); -} - -extern "C" void softmax_tree_gpu(float *input, int spatial, int batch, int stride, float temp, float *output, tree hier) -{ - int *tree_groups_size = cuda_make_int_array_new_api(hier.group_size, hier.groups); - int *tree_groups_offset = cuda_make_int_array_new_api(hier.group_offset, hier.groups); - /* - static int *tree_groups_size = 0; - static int *tree_groups_offset = 0; - if(!tree_groups_size){ - tree_groups_size = cuda_make_int_array(hier.group_size, hier.groups); - tree_groups_offset = cuda_make_int_array(hier.group_offset, hier.groups); - } - */ - int num = spatial*batch*hier.groups; - softmax_tree_kernel <<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(input, spatial, batch, stride, temp, output, hier.groups, tree_groups_size, tree_groups_offset); - CHECK_CUDA(cudaPeekAtLastError()); - cuda_free((float *)tree_groups_size); - cuda_free((float *)tree_groups_offset); -} - - -__global__ void fix_nan_and_inf_kernel(float *input, size_t size) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - float val = input[index]; - if (isnan(val) || isinf(val)) { - input[index] = 1.0f / (fabs((float)index) + 1); // pseudo random value - } - } -} - -extern "C" void fix_nan_and_inf(float *input, size_t size) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - fix_nan_and_inf_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(input, size); - CHECK_CUDA(cudaPeekAtLastError()); - //CHECK_CUDA(cudaDeviceSynchronize()); -} - - -__global__ void reset_nan_and_inf_kernel(float *input, size_t size) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - float val = input[index]; - if (isnan(val) || isinf(val)) { - input[index] = 0; - } - } -} - -extern "C" void reset_nan_and_inf(float *input, size_t size) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - reset_nan_and_inf_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(input, size); - CHECK_CUDA(cudaPeekAtLastError()); - //CHECK_CUDA(cudaDeviceSynchronize()); -} - - - -__global__ void is_nan_or_inf_kernel(float *input, size_t size, int *pinned_return) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - float val = input[index]; - if (isnan(val) || isinf(val)) - *pinned_return = 1; - } -} - -extern "C" int is_nan_or_inf(float *input, size_t size) -{ - int *pinned_return; - CHECK_CUDA(cudaHostAlloc(&pinned_return, sizeof(int), cudaHostRegisterMapped)); - *pinned_return = 0; - - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - is_nan_or_inf_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(input, size, pinned_return); - CHECK_CUDA(cudaDeviceSynchronize()); - int ret_val = *pinned_return; - - CHECK_CUDA(cudaFreeHost(pinned_return)); - return ret_val; -} - -__global__ void add_3_arrays_activate_kernel(float *a1, float *a2, float *a3, size_t size, ACTIVATION a, float *dst) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - float val = 0; - val += a1[index]; - val += a2[index]; - if (a3) val += a3[index]; - if (a == LOGISTIC) val = 1.f / (1.f + expf(-val)); - else if(a == TANH) val = (2 / (1 + expf(-2 * val)) - 1); - dst[index] = val; - } -} - -extern "C" void add_3_arrays_activate(float *a1, float *a2, float *a3, size_t size, ACTIVATION a, float *dst) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - if (a != LOGISTIC && a != TANH) { - printf(" add_3_arrays_activate() doesn't support activation %d, it supports only LOGISTIC and TANH \n", a); - exit(EXIT_FAILURE); - } - add_3_arrays_activate_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(a1, a2, a3, size, a, dst); -} - - -__global__ void sum_of_mults_kernel(float *a1, float *a2, float *b1, float *b2, size_t size, float *dst) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - dst[index] = a1[index] * a2[index] + b1[index] * b2[index]; - } -} - -extern "C" void sum_of_mults(float *a1, float *a2, float *b1, float *b2, size_t size, float *dst) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - sum_of_mults_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(a1, a2, b1, b2, size, dst); -} - - -__global__ void activate_and_mult_kernel(float *a1, float *a2, size_t size, ACTIVATION a, float *dst) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - float val = a1[index]; - if (a == TANH) val = (2 / (1 + expf(-2 * val)) - 1); - dst[index] = val * a2[index]; - } -} - -extern "C" void activate_and_mult(float *a1, float *a2, size_t size, ACTIVATION a, float *dst) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - if (a != TANH) { - printf(" activat_and_mult() doesn't support activation %d, it supports only TANH \n", a); - exit(EXIT_FAILURE); - } - activate_and_mult_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(a1, a2, size, a, dst); -} - - - -__global__ void scale_channels_kernel(float *in_w_h_c, int size, int channel_size, int batch_size, int scale_wh, float *scales_c, float *out) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - if (scale_wh) { - int osd_index = index % channel_size + (index / batch_size)*channel_size; - - out[index] = in_w_h_c[index] * scales_c[osd_index]; - } - else { - out[index] = in_w_h_c[index] * scales_c[index / channel_size]; - } - } -} - -extern "C" void scale_channels_gpu(float *in_w_h_c, int size, int channel_size, int batch_size, int scale_wh, float *scales_c, float *out) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - scale_channels_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(in_w_h_c, size, channel_size, batch_size, scale_wh, scales_c, out); - CHECK_CUDA(cudaPeekAtLastError()); -} - - - - -__global__ void backward_scale_channels_kernel(float *in_w_h_c_delta, int size, int channel_size, int batch_size, int scale_wh, - float *in_scales_c, float *out_from_delta, - float *in_from_output, float *out_state_delta) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - - if (index < size) { - - if (scale_wh) - { - int osd_index = index % channel_size + (index / batch_size)*channel_size; - - //out_state_delta[osd_index] += in_w_h_c_delta[index] * in_from_output[index]; // l.delta * from (should be divided by channel_size?) - atomicAdd(&out_state_delta[osd_index], in_w_h_c_delta[index] * in_from_output[index] / channel_size); // l.delta * from - - out_from_delta[index] += in_scales_c[osd_index] * in_w_h_c_delta[index]; // input * l.delta // atomic isn't required here - - } - else { - int osd_index = index / channel_size; - //out_state_delta[osd_index] += in_w_h_c_delta[index] * in_from_output[index]; // l.delta * from (should be divided by channel_size?) - - int warp_id = index / 32; - int index_warp_start = warp_id * 32; - int osd_index_warp_start = index_warp_start / channel_size; - int osd_index_warp_end = (index_warp_start + 31) / channel_size; - - if (osd_index_warp_start == osd_index_warp_end) // all thread in warp process the same channel - { - float sum = warpAllReduceSum(in_w_h_c_delta[index] * in_from_output[index]); // l.delta * from - if (threadIdx.x % 32 == 0) { - atomicAdd(&out_state_delta[osd_index], sum); - //out_state_delta[osd_index] += sum; - } - } - else { - atomicAdd(&out_state_delta[osd_index], in_w_h_c_delta[index] * in_from_output[index]); // l.delta * from - } - - out_from_delta[index] += in_scales_c[osd_index] * in_w_h_c_delta[index]; // input * l.delta // atomic isn't required here - } - } -} - -extern "C" void backward_scale_channels_gpu(float *in_w_h_c_delta, int size, int channel_size, int batch_size, int scale_wh, - float *in_scales_c, float *out_from_delta, - float *in_from_output, float *out_state_delta) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - backward_scale_channels_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (in_w_h_c_delta, size, channel_size, batch_size, scale_wh, - in_scales_c, out_from_delta, - in_from_output, out_state_delta); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void sam_kernel(float *in_w_h_c, int size, int channel_size, float *scales_c, float *out) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - out[index] = in_w_h_c[index] * scales_c[index]; - } -} - -extern "C" void sam_gpu(float *in_w_h_c, int size, int channel_size, float *scales_c, float *out) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - sam_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(in_w_h_c, size, channel_size, scales_c, out); - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void backward_sam_kernel(float *in_w_h_c_delta, int size, int channel_size, - float *in_scales_c, float *out_from_delta, - float *in_from_output, float *out_state_delta) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - if (index < size) { - out_state_delta[index] += in_w_h_c_delta[index] * in_from_output[index]; // l.delta * from (should be divided by channel_size?) - out_from_delta[index] += in_scales_c[index] * in_w_h_c_delta[index]; // input * l.delta - - //out_state_delta[index] += in_w_h_c_delta[index]; - //out_from_delta[index] = in_w_h_c_delta[index]; - } -} - -extern "C" void backward_sam_gpu(float *in_w_h_c_delta, int size, int channel_size, - float *in_scales_c, float *out_from_delta, - float *in_from_output, float *out_state_delta) -{ - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(size, block_size); - backward_sam_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (in_w_h_c_delta, size, channel_size, - in_scales_c, out_from_delta, - in_from_output, out_state_delta); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - -__global__ void smooth_rotate_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, int angle, int reverse) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - const int kernel_area = kernel_size * kernel_size; - const int i = index * kernel_area; - - const int stage_step = (nweights / kernel_area) / 4; // 4 stages - const int stage_id = index / stage_step; - - // nweights = (c / groups) * n * size * size; - // kernel_area = size*size - - if (i < nweights) - { - // rotate left or right - if (reverse) angle = -angle; - - const float cos_a = cosf(angle * 3.14159265 / 180); - const float sin_a = sinf(angle * 3.14159265 / 180); - const int x_c = kernel_size / 2; - const int y_c = kernel_size / 2; - - float dropout_sum = 0; - - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - // Xsource = x*cos(alpha) + y*sin(alpha) - // Ysource = -x*sin(alpha) + y*cos(alpha) - - float x_s = x_c + (x - x_c)*cos_a + (y - y_c)*sin_a; - float y_s = y_c - (x - x_c)*sin_a + (y - y_c)*cos_a; - - int x_0 = floor(x_s); // round down - int x_1 = ceil(x_s); // round up - if (x_0 == x_1) x_1 = x_0 + 1; - int y_0 = floor(y_s); - int y_1 = ceil(y_s); - if (y_0 == y_1) y_1 = y_0 + 1; - - float c_x_0 = x_1 - x_s; - float c_x_1 = x_s - x_0; - float c_y_0 = y_1 - y_s; - float c_y_1 = y_s - y_0; - - - float val = 0; - if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; - else dropout_sum += c_x_0 * c_y_0; - - if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; - else dropout_sum += c_x_1 * c_y_0; - - if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; - else dropout_sum += c_x_0 * c_y_1; - - if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; - else dropout_sum += c_x_1 * c_y_1; - - weight_deform_gpu[x + y*kernel_size + i] = val; - } - } - - // compensate for dropped items - const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - weight_deform_gpu[x + y*kernel_size + i] *= coef; - } - } - } -} - - -extern "C" void smooth_rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse) -{ - const int kernel_area = size*size; - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); - smooth_rotate_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, angle, reverse); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void stretch_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, float scale, int reverse) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - const int kernel_area = kernel_size * kernel_size; - const int i = index * kernel_area; - - const int stage_step = (nweights / kernel_area) / 4; // 4 stages - const int stage_id = index / stage_step; - - // nweights = (c / groups) * n * size * size; - // kernel_area = size*size - - if (i < nweights) - { - - if (stage_id == 0) { - // simple copy - for (int x = 0; x < kernel_size; ++x) { - for (int y = 0; y < kernel_size; ++y) { - weight_deform_gpu[x + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; - } - } - } - else if (stage_id > 0) - { - if (stage_id == 1) scale = 0.65; - else if (stage_id == 2) scale = 0.8; - else if (stage_id == 3) scale = 1.3; - - if (reverse) scale = 1 / scale; - - const int x_c = kernel_size / 2; - const int y_c = kernel_size / 2; - - float dropout_sum = 0; - - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - // Xsource = x_c + (x_d - x_c) / scale - // Ysource = y_c + (y_d - y_c) / scale - - float x_s = x_c + (x - x_c) / scale; - float y_s = y_c + (y - y_c) / scale; - - int x_0 = floor(x_s); // round down - int x_1 = ceil(x_s); // round up - if (x_0 == x_1) x_1 = x_0 + 1; - int y_0 = floor(y_s); - int y_1 = ceil(y_s); - if (y_0 == y_1) y_1 = y_0 + 1; - - float c_x_0 = x_1 - x_s; - float c_x_1 = x_s - x_0; - float c_y_0 = y_1 - y_s; - float c_y_1 = y_s - y_0; - - float val = 0; - if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; - else dropout_sum += c_x_0 * c_y_0; - - if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; - else dropout_sum += c_x_1 * c_y_0; - - if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; - else dropout_sum += c_x_0 * c_y_1; - - if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; - else dropout_sum += c_x_1 * c_y_1; - - weight_deform_gpu[x + y*kernel_size + i] = val; - } - } - - // compensate for dropped items - //const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - //if (scale < 1) weight_deform_gpu[x + y*kernel_size + i] /= scale;// *= coef; - weight_deform_gpu[x + y*kernel_size + i] /= scale;// *= coef; - } - } - } - } -} - - -extern "C" void stretch_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, float scale, int reverse) -{ - const int kernel_area = size*size; - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); - stretch_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, scale, reverse); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void sway_and_flip_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, int angle, int reverse) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - const int kernel_area = kernel_size * kernel_size; - const int i = index * kernel_area; - - const int stage_step = (nweights / kernel_area) / 4; // 4 stages - const int stage_id = index / stage_step; - - // nweights = (c / groups) * n * size * size; - // kernel_area = size*size - - if (i < nweights) - { - - if (stage_id == 0) { - // simple copy - for (int x = 0; x < kernel_size; ++x) { - for (int y = 0; y < kernel_size; ++y) { - weight_deform_gpu[x + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; - } - } - } - else if (stage_id == 1 || stage_id == 2) - { - // rotate left or right - if (stage_id == 2) angle = -angle; - if (reverse) angle = -angle; - - const float cos_a = cosf(angle * 3.14159265 / 180); - const float sin_a = sinf(angle * 3.14159265 / 180); - const int x_c = kernel_size / 2; - const int y_c = kernel_size / 2; - - float dropout_sum = 0; - - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - // Xsource = x*cos(alpha) + y*sin(alpha) - // Ysource = -x*sin(alpha) + y*cos(alpha) - - float x_s = x_c + (x - x_c)*cos_a + (y - y_c)*sin_a; - float y_s = y_c - (x - x_c)*sin_a + (y - y_c)*cos_a; - - int x_0 = floor(x_s); // round down - int x_1 = ceil(x_s); // round up - if (x_0 == x_1) x_1 = x_0 + 1; - int y_0 = floor(y_s); - int y_1 = ceil(y_s); - if (y_0 == y_1) y_1 = y_0 + 1; - - float c_x_0 = x_1 - x_s; - float c_x_1 = x_s - x_0; - float c_y_0 = y_1 - y_s; - float c_y_1 = y_s - y_0; - - float val = 0; - if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; - else dropout_sum += c_x_0 * c_y_0; - - if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; - else dropout_sum += c_x_1 * c_y_0; - - if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; - else dropout_sum += c_x_0 * c_y_1; - - if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; - else dropout_sum += c_x_1 * c_y_1; - - weight_deform_gpu[x + y*kernel_size + i] = val; - } - } - - // compensate for dropped items - const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - weight_deform_gpu[x + y*kernel_size + i] *= coef; - } - } - } - else if (stage_id == 3) - { - // flip - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - weight_deform_gpu[(kernel_size - x - 1) + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; - } - } - } - } -} - - -extern "C" void sway_and_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse) -{ - const int kernel_area = size*size; - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); - sway_and_flip_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, angle, reverse); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - - - - - - -__global__ void rotate_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, int reverse) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - const int kernel_area = kernel_size * kernel_size; - const int i = index * kernel_area; - - const int stage_step = (nweights / kernel_area) / 4; // 4 stages - const int stage_id = index / stage_step; - - // nweights = (c / groups) * n * size * size; - // kernel_area = size*size - - if (i < nweights) - { - // if(reverse) - - if (stage_id == 0) { - // simple copy - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - const int src_i = x + y*kernel_size + i; - const int dst_i = x + y*kernel_size + i; - if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; - else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; - } - } - } - else if (stage_id == 1) - { - // 90 degree clockwise rotation - 1 - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - const int src_i = x + y*kernel_size + i; - const int dst_i = (kernel_size - 1 - y) + x*kernel_size + i; - if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; - else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; - } - } - } - else if (stage_id == 2) - { - // 180 degree clockwise rotation - 2 - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - const int src_i = x + y*kernel_size + i; - const int dst_i = (kernel_size - 1 - x) + (kernel_size - 1 - y)*kernel_size + i; - if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; - else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; - } - } - } - else if (stage_id == 3) - { - // 270 degree clockwise rotation - 3 - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - const int src_i = x + y*kernel_size + i; - const int dst_i = y + (kernel_size - 1 - x)*kernel_size + i; - if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; - else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; - } - } - } - } -} - - -extern "C" void rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int reverse) -{ - const int kernel_area = size*size; - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); - rotate_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, reverse); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void stretch_sway_flip_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, float angle, int reverse) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - const int kernel_area = kernel_size * kernel_size; - const int i = index * kernel_area; - - const int stage_step = (nweights / kernel_area) / 8; // 8 stages - const int stage_id = index / stage_step; - - // nweights = (c / groups) * n * size * size; - // kernel_area = size*size - - if (i < nweights) - { - - if (stage_id == 0) { - // simple copy - for (int x = 0; x < kernel_size; ++x) { - for (int y = 0; y < kernel_size; ++y) { - weight_deform_gpu[x + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; - } - } - } - else if (stage_id == 1 || stage_id == 2 || stage_id == 3 || stage_id == 4) - { - float scale = 0.5; - if (stage_id == 1) scale = 0.65; - else if (stage_id == 2) scale = 0.8; - else if (stage_id == 3) scale = 1.2; - else if (stage_id == 4) scale = 1.4; - - if (reverse) scale = 1 / scale; - - const int x_c = kernel_size / 2; - const int y_c = kernel_size / 2; - - float dropout_sum = 0; - - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - // Xsource = x_c + (x_d - x_c) / scale - // Ysource = y_c + (y_d - y_c) / scale - - float x_s = x_c + (x - x_c) / scale; - float y_s = y_c + (y - y_c) / scale; - - int x_0 = floor(x_s); // round down - int x_1 = ceil(x_s); // round up - if (x_0 == x_1) x_1 = x_0 + 1; - int y_0 = floor(y_s); - int y_1 = ceil(y_s); - if (y_0 == y_1) y_1 = y_0 + 1; - - float c_x_0 = x_1 - x_s; - float c_x_1 = x_s - x_0; - float c_y_0 = y_1 - y_s; - float c_y_1 = y_s - y_0; - - float val = 0; - if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; - else dropout_sum += c_x_0 * c_y_0; - - if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; - else dropout_sum += c_x_1 * c_y_0; - - if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; - else dropout_sum += c_x_0 * c_y_1; - - if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; - else dropout_sum += c_x_1 * c_y_1; - - weight_deform_gpu[x + y*kernel_size + i] = val; - } - } - - // compensate for dropped items - //const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - if(scale > 1) - weight_deform_gpu[x + y*kernel_size + i] /= scale;// *= coef; - } - } - } - else if (stage_id == 5 || stage_id == 6) - { - // rotate left or right - if (stage_id == 6) angle = -angle; - if (reverse) angle = -angle; - - const float cos_a = cosf(angle * 3.14159265 / 180); - const float sin_a = sinf(angle * 3.14159265 / 180); - const int x_c = kernel_size / 2; - const int y_c = kernel_size / 2; - - float dropout_sum = 0; - - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - // Xsource = x*cos(alpha) + y*sin(alpha) - // Ysource = -x*sin(alpha) + y*cos(alpha) - - float x_s = x_c + (x - x_c)*cos_a + (y - y_c)*sin_a; - float y_s = y_c - (x - x_c)*sin_a + (y - y_c)*cos_a; - - int x_0 = floor(x_s); // round down - int x_1 = ceil(x_s); // round up - if (x_0 == x_1) x_1 = x_0 + 1; - int y_0 = floor(y_s); - int y_1 = ceil(y_s); - if (y_0 == y_1) y_1 = y_0 + 1; - - float c_x_0 = x_1 - x_s; - float c_x_1 = x_s - x_0; - float c_y_0 = y_1 - y_s; - float c_y_1 = y_s - y_0; - - float val = 0; - if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; - else dropout_sum += c_x_0 * c_y_0; - - if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; - else dropout_sum += c_x_1 * c_y_0; - - if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; - else dropout_sum += c_x_0 * c_y_1; - - if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; - else dropout_sum += c_x_1 * c_y_1; - - weight_deform_gpu[x + y*kernel_size + i] = val; - } - } - - // compensate for dropped items - const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - weight_deform_gpu[x + y*kernel_size + i] *= coef; - } - } - } - else if (stage_id == 7) - { - // flip - for (int y = 0; y < kernel_size; ++y) { - for (int x = 0; x < kernel_size; ++x) { - weight_deform_gpu[(kernel_size - x - 1) + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; - } - } - } - } -} - - -extern "C" void stretch_sway_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse) -{ - const int kernel_area = size*size; - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); - stretch_sway_flip_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, angle, reverse); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void reduce_and_expand_array_kernel(const float *src_gpu, float *dst_gpu, int current_size, int groups) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - - if (index < current_size) { - float val = 0; - for (int i = 0; i < groups; ++i) { - val += src_gpu[index + i*current_size]; - } - for (int i = 0; i < groups; ++i) { - dst_gpu[index + i*current_size] = val / groups; - } - } -} - -extern "C" void reduce_and_expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups) -{ - const int current_size = size / groups; - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(current_size, block_size); - reduce_and_expand_array_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_gpu, dst_gpu, current_size, groups); - - CHECK_CUDA(cudaPeekAtLastError()); -} - - - -__global__ void expand_array_kernel(const float *src_gpu, float *dst_gpu, int current_size, int groups) -{ - const int index = blockIdx.x*blockDim.x + threadIdx.x; - - if (index < current_size) { - for (int i = 0; i < groups; ++i) { - dst_gpu[index + i*current_size] = src_gpu[index]; - } - } -} - -extern "C" void expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups) -{ - const int current_size = size / groups; - const int block_size = BLOCK; - const int num_blocks = get_number_of_blocks(current_size, block_size); - expand_array_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_gpu, dst_gpu, current_size, groups); - - CHECK_CUDA(cudaPeekAtLastError()); -} \ No newline at end of file +#include <cuda_runtime.h> +#include <curand.h> +#include <cublas_v2.h> +#include <assert.h> +#include <float.h> + +#include "blas.h" +#include "dark_cuda.h" +#include "utils.h" +#include "tree.h" + +__inline__ __device__ +float warpAllReduceSum(float val) { + for (int mask = WARP_SIZE / 2; mask > 0; mask /= 2) +#if CUDART_VERSION >= 9000 + val += __shfl_xor_sync(0xffffffff, val, mask); +#else + val += __shfl_xor(val, mask); +#endif + return val; +} + +__global__ void compare_2_arrays_kernel(float *one, float *two, int size) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index >= size) return; + + const float diff = 100 * fabs(one[index] - two[index]) / fabs(one[index]); + + if (diff > 10) printf(" i: %d - one = %f, two = %f, diff = %f %% \n", index, one[index], two[index], diff); +} + +void compare_2_arrays_gpu(float *one, float *two, int size) +{ + const int num_blocks = get_number_of_blocks(size, BLOCK); + + compare_2_arrays_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(one, two, size); + CHECK_CUDA(cudaPeekAtLastError()); + CHECK_CUDA(cudaDeviceSynchronize()); +} + +__global__ void mean_array_kernel(float *src, int size, float alpha, float *avg) +{ + const int i = blockIdx.x*blockDim.x + threadIdx.x; + if (i >= size) return; + + avg[i] = avg[i] * (1 - alpha) + src[i] * alpha; + src[i] = avg[i]; +} + + +void mean_array_gpu(float *src, int size, float alpha, float *avg) +{ + const int num_blocks = get_number_of_blocks(size, BLOCK); + + mean_array_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(src, size, alpha, avg); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void scale_bias_kernel(float *output, float *scale, int batch, int filters, int spatial, int current_size) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index >= current_size) return; + + int f = (index / spatial) % filters; + output[index] *= scale[f]; +} + +void scale_bias_gpu(float *output, float *scale, int batch, int filters, int spatial) +{ + const int current_size = batch * filters * spatial; + const int num_blocks = get_number_of_blocks(current_size, BLOCK); + + scale_bias_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(output, scale, batch, filters, spatial, current_size); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void backward_scale_kernel(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) +{ + __shared__ float part[BLOCK]; + int i,b; + int filter = blockIdx.x; + int p = threadIdx.x; + float sum = 0; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; i += BLOCK){ + int index = p + i + size*(filter + n*b); + sum += (p+i < size) ? delta[index]*x_norm[index] : 0; + } + } + part[p] = sum; + __syncthreads(); + if (p == 0) { + for(i = 0; i < BLOCK; ++i) scale_updates[filter] += part[i]; + } +} + +void backward_scale_gpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) +{ + backward_scale_kernel<<<n, BLOCK, 0, get_cuda_stream() >>>(x_norm, delta, batch, n, size, scale_updates); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void add_bias_kernel(float *output, float *biases, int batch, int filters, int spatial, int current_size) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index >= current_size) return; + + int f = (index / spatial) % filters; + output[index] += biases[f]; +} + +void add_bias_gpu(float *output, float *biases, int batch, int filters, int spatial) +{ + const int current_size = batch * filters * spatial; + const int num_blocks = get_number_of_blocks(current_size, BLOCK); + + add_bias_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(output, biases, batch, filters, spatial, current_size); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size) +{ + __shared__ float part[BLOCK]; + int i,b; + int filter = blockIdx.x; + int p = threadIdx.x; + float sum = 0; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; i += BLOCK){ + int index = p + i + size*(filter + n*b); + sum += (p+i < size) ? delta[index] : 0; + } + } + part[p] = sum; + __syncthreads(); + if (p == 0) { + for(i = 0; i < BLOCK; ++i) bias_updates[filter] += part[i]; + } +} + +/* +__global__ void dot_kernel(float *output, float scale, int batch, int n, int size, float *delta) +{ + int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + int f1 = index / n; + int f2 = index % n; + if (f2 <= f1) return; + + float sum = 0; + float norm1 = 0; + float norm2 = 0; + int b, i; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; ++i){ + int i1 = b * size * n + f1 * size + i; + int i2 = b * size * n + f2 * size + i; + sum += output[i1] * output[i2]; + norm1 += output[i1] * output[i1]; + norm2 += output[i2] * output[i2]; + } + } + norm1 = sqrt(norm1); + norm2 = sqrt(norm2); + float norm = norm1 * norm2; + sum = sum / norm; + for(b = 0; b < batch; ++b){ + for(i = 0; i < size; ++i){ + int i1 = b * size * n + f1 * size + i; + int i2 = b * size * n + f2 * size + i; + delta[i1] += - scale * sum * output[i2] / norm; + delta[i2] += - scale * sum * output[i1] / norm; + } + } +} + +void dot_error_gpu(layer l) +{ + dot_kernel<<<cuda_gridsize(l.n*l.n), BLOCK, 0, get_cuda_stream()>>>(l.output_gpu, l.dot, l.batch, l.n, l.out_w * l.out_h, l.delta_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} +*/ + +void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) +{ + backward_bias_kernel<<<n, BLOCK, 0, get_cuda_stream() >>>(bias_updates, delta, batch, n, size); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void adam_kernel(int N, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t) +{ + int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (index >= N) return; + + float mhat = m[index] / (1.f - powf(B1, t)); + float vhat = v[index] / (1.f - powf(B2, t)); + + x[index] = x[index] + rate * mhat / (sqrtf(vhat) + eps); +} + +extern "C" void adam_gpu(int n, float *x, float *m, float *v, float B1, float B2, float rate, float eps, int t) +{ + adam_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(n, x, m, v, B1, B2, rate, eps, t); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void adam_update_gpu(float *w, float *d, float *m, float *v, float B1, float B2, float eps, float decay, float rate, int n, int batch, int t) +{ + scal_ongpu(n, B1, m, 1); + scal_ongpu(n, B2, v, 1); + axpy_ongpu(n, -decay*batch, w, 1, d, 1); + + axpy_ongpu(n, (1 - B1), d, 1, m, 1); + mul_ongpu(n, d, 1, d, 1); + axpy_ongpu(n, (1 - B2), d, 1, v, 1); + + adam_gpu(n, w, m, v, B1, B2, rate, eps, t); + fill_ongpu(n, 0, d, 1); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void normalize_kernel(int N, float *x, float *mean, float *variance, int batch, int filters, int spatial) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index >= N) return; + int f = (index / spatial) % filters; + + x[index] = (x[index] - mean[f]) / (sqrtf(variance[f] + .00001f)); +} + +extern "C" void normalize_gpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) +{ + const int current_size = batch * filters * spatial; + const int num_blocks = get_number_of_blocks(current_size, BLOCK); + + normalize_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(current_size, x, mean, variance, batch, filters, spatial); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void normalize_delta_kernel(int N, float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) +{ + int index = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (index >= N) return; + int f = (index/spatial)%filters; + + delta[index] = delta[index] * 1.F/(sqrtf(variance[f]) + .000001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); +} + +extern "C" void normalize_delta_gpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) +{ + size_t N = batch*filters*spatial; + normalize_delta_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, x, mean, variance, mean_delta, variance_delta, batch, filters, spatial, delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i >= filters) return; + int j,k; + variance_delta[i] = 0; + for(j = 0; j < batch; ++j){ + for(k = 0; k < spatial; ++k){ + int index = j*filters*spatial + i*spatial + k; + variance_delta[i] += delta[index]*(x[index] - mean[i]); + } + } + variance_delta[i] *= -.5 * powf(variance[i] + .000001f, (float)(-3./2.)); +} + +__global__ void accumulate_kernel(float *x, int n, int groups, float *sum) +{ + int k; + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i >= groups) return; + sum[i] = 0; + for(k = 0; k < n; ++k){ + sum[i] += x[k*groups + i]; + } +} + +__global__ void fast_mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) +{ + const int threads = BLOCK; + __shared__ float local[threads]; + + int id = threadIdx.x; + local[id] = 0; + + int filter = blockIdx.x; + + int i, j; + for(j = 0; j < batch; ++j){ + for(i = 0; i < spatial; i += threads){ + int index = j*spatial*filters + filter*spatial + i + id; + local[id] += (i+id < spatial) ? delta[index] : 0; + } + } + __syncthreads(); + + if(id == 0){ + mean_delta[filter] = 0; + for(i = 0; i < threads; ++i){ + mean_delta[filter] += local[i]; + } + mean_delta[filter] *= (-1.F/sqrtf(variance[filter] + .000001f)); + } +} + +__global__ void fast_variance_delta_kernel(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) +{ + const int threads = BLOCK; + __shared__ float local[threads]; + + int id = threadIdx.x; + local[id] = 0; + + int filter = blockIdx.x; + + int i, j; + for(j = 0; j < batch; ++j){ + for(i = 0; i < spatial; i += threads){ + int index = j*spatial*filters + filter*spatial + i + id; + + local[id] += (i+id < spatial) ? delta[index]*(x[index] - mean[filter]) : 0; + } + } + __syncthreads(); + + if(id == 0){ + variance_delta[filter] = 0; + for(i = 0; i < threads; ++i){ + variance_delta[filter] += local[i]; + } + variance_delta[filter] *= -.5 * powf(variance[filter] + .000001f, (float)(-3./2.)); + } +} + + +__global__ void mean_delta_kernel(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i >= filters) return; + int j,k; + mean_delta[i] = 0; + for (j = 0; j < batch; ++j) { + for (k = 0; k < spatial; ++k) { + int index = j*filters*spatial + i*spatial + k; + mean_delta[i] += delta[index]; + } + } + mean_delta[i] *= (-1.F/sqrtf(variance[i] + .000001f)); +} + +extern "C" void mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) +{ + mean_delta_kernel<<<cuda_gridsize(filters), BLOCK, 0, get_cuda_stream() >>>(delta, variance, batch, filters, spatial, mean_delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void fast_mean_delta_gpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) +{ + fast_mean_delta_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(delta, variance, batch, filters, spatial, mean_delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void fast_variance_delta_gpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) +{ + fast_variance_delta_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(x, delta, mean, variance, batch, filters, spatial, variance_delta); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void mean_kernel(float *x, int batch, int filters, int spatial, float *mean) +{ + float scale = 1.F/(batch * spatial); + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i >= filters) return; + int j,k; + mean[i] = 0; + for(j = 0; j < batch; ++j){ + for(k = 0; k < spatial; ++k){ + int index = j*filters*spatial + i*spatial + k; + mean[i] += x[index]; + } + } + mean[i] *= scale; +} + +__global__ void variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) +{ + float scale = 1.F/(batch * spatial - 1); + int j,k; + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i >= filters) return; + variance[i] = 0; + for(j = 0; j < batch; ++j){ + for(k = 0; k < spatial; ++k){ + int index = j*filters*spatial + i*spatial + k; + variance[i] += powf((x[index] - mean[i]), 2); + } + } + variance[i] *= scale; +} + +__global__ void reorg_kernel(int N, float *x, int w, int h, int c, int batch, int stride, int forward, float *out) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i >= N) return; + int in_index = i; + int in_w = i%w; + i = i/w; + int in_h = i%h; + i = i/h; + int in_c = i%c; + i = i/c; + int b = i%batch; + + int out_c = c/(stride*stride); + + int c2 = in_c % out_c; + int offset = in_c / out_c; + int w2 = in_w*stride + offset % stride; + int h2 = in_h*stride + offset / stride; + //printf("%d\n", offset); + int out_index = w2 + w*stride*(h2 + h*stride*(c2 + out_c*b)); + + // printf("%d %d %d\n", w2, h2, c2); + //printf("%d %d\n", in_index, out_index); + //if(out_index >= N || out_index < 0) printf("bad bad bad \n"); + + if(forward) out[out_index] = x[in_index]; + else out[in_index] = x[out_index]; + //if(forward) out[1] = x[1]; + //else out[0] = x[0]; +} + +__global__ void constrain_weight_updates_kernel(int N, float coef, float *weights_gpu, float *weight_updates_gpu) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < N) { + const float w = weights_gpu[i]; + const float wu = weight_updates_gpu[i]; + const float wu_sign = (wu == 0) ? 0 : (fabs(wu) / wu); + const float abs_limit = fabs(w * coef); + if (fabs(wu) > abs_limit) weight_updates_gpu[i] = abs_limit * wu_sign; + } +} + +extern "C" void constrain_weight_updates_ongpu(int N, float coef, float *weights_gpu, float *weight_updates_gpu) +{ + constrain_weight_updates_kernel << <cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >> >(N, coef, weights_gpu, weight_updates_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void axpy_kernel(int N, float ALPHA, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) Y[OFFY+i*INCY] += ALPHA*X[OFFX+i*INCX]; +} + +__global__ void pow_kernel(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) Y[i*INCY] = powf(X[i*INCX], ALPHA); +} + +__global__ void const_kernel(int N, float ALPHA, float *X, int INCX) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) X[i*INCX] = ALPHA; +} + +__global__ void constrain_kernel(int N, float ALPHA, float *X, int INCX) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) X[i*INCX] = fminf(ALPHA, fmaxf(-ALPHA, X[i*INCX])); +} +__global__ void constrain_min_max_kernel(int N, float MIN, float MAX, float *X, int INCX) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < N) X[i*INCX] = fminf(MAX, fmaxf(MIN, X[i*INCX])); +} + +__global__ void supp_kernel(int N, float ALPHA, float *X, int INCX) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) { + if((X[i*INCX] * X[i*INCX]) < (ALPHA * ALPHA)) X[i*INCX] = 0; + } +} + +__global__ void scal_kernel(int N, float ALPHA, float *X, int INCX) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) X[i*INCX] *= ALPHA; +} + +__global__ void scal_add_kernel(int N, float ALPHA, float BETA, float *X, int INCX) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < N) X[i*INCX] = X[i*INCX] * ALPHA + BETA; +} + +__global__ void fill_kernel(int N, float ALPHA, float *X, int INCX) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index >= N) return; + X[index*INCX] = ALPHA; +} + +__global__ void mask_kernel_new_api(int n, float *x, float mask_num, float *mask, float val) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n && mask[i] == mask_num) x[i] = val; +} + +__global__ void mask_kernel(int n, float *x, float mask_num, float *mask) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n && mask[i] == mask_num) x[i] = mask_num; +} + +__global__ void copy_kernel(int N, float *X, int OFFX, int INCX, float *Y, int OFFY, int INCY) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) Y[i*INCY + OFFY] = X[i*INCX + OFFX]; +} + +__global__ void simple_copy_kernel(int size, float *src, float *dst) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) + dst[index] = src[index]; +} + +__global__ void mul_kernel(int N, float *X, int INCX, float *Y, int INCY) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < N) Y[i*INCY] *= X[i*INCX]; +} + + +__global__ void fast_mean_kernel(float *x, int batch, int filters, int spatial, float *mean) +{ + const int threads = BLOCK; + __shared__ float local[threads]; + + int id = threadIdx.x; + local[id] = 0; + + int filter = blockIdx.x; + + int i, j; + for(j = 0; j < batch; ++j){ + for(i = 0; i < spatial; i += threads){ + int index = j*spatial*filters + filter*spatial + i + id; + local[id] += (i+id < spatial) ? x[index] : 0; + } + } + __syncthreads(); + + if(id == 0){ + float mean_tmp = 0; + for(i = 0; i < threads; ++i){ + mean_tmp += local[i]; + } + mean_tmp /= spatial * batch; + mean[filter] = mean_tmp; + } +} + +extern "C" void fast_mean_gpu(float *x, int batch, int filters, int spatial, float *mean) +{ + fast_mean_kernel << <filters, BLOCK, 0, get_cuda_stream() >> >(x, batch, filters, spatial, mean); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void fast_variance_kernel(float *x, float *mean, int batch, int filters, int spatial, float *variance) +{ + const int threads = BLOCK; + __shared__ float local[threads]; + + int id = threadIdx.x; + local[id] = 0; + + int filter = blockIdx.x; + + int i, j; + for(j = 0; j < batch; ++j){ + for(i = 0; i < spatial; i += threads){ + int index = j*spatial*filters + filter*spatial + i + id; + + local[id] += (i+id < spatial) ? powf((x[index] - mean[filter]), 2) : 0; + } + } + __syncthreads(); + + if(id == 0){ + float variance_tmp = 0; + for(i = 0; i < threads; ++i){ + variance_tmp += local[i]; + } + variance_tmp /= (spatial * batch);// -1); + variance[filter] = variance_tmp; + } +} + +extern "C" void fast_variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) +{ + fast_variance_kernel<<<filters, BLOCK, 0, get_cuda_stream() >>>(x, mean, batch, filters, spatial, variance); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void fast_v_cbn_kernel(const float *x, float *mean, int batch, int filters, int spatial, int minibatch_index, int max_minibatch_index, float *m_avg, float *v_avg, float *variance, + const float alpha, float *rolling_mean_gpu, float *rolling_variance_gpu, int inverse_variance, float epsilon) +{ + const int threads = BLOCK; + __shared__ float local[threads]; + + int id = threadIdx.x; + local[id] = 0; + + int filter = blockIdx.x; + + int i, j; + for (j = 0; j < batch; ++j) { + for (i = 0; i < spatial; i += threads) { + int index = j*spatial*filters + filter*spatial + i + id; + + local[id] += (i + id < spatial) ? powf(x[index], 2) : 0; + } + } + __syncthreads(); + + if (id == 0) { + float v_tmp = 0; + v_tmp = 0; + for (i = 0; i < threads; ++i) { + v_tmp += local[i]; + } + v_tmp /= (spatial * batch - 1); + + v_tmp = fmax(v_tmp, powf(mean[filter], 2)); + + + const float alpha_cbn = 1.0f / minibatch_index; + + m_avg[filter] = alpha_cbn * mean[filter] + (1 - alpha_cbn) * m_avg[filter]; + mean[filter] = m_avg[filter]; + + v_avg[filter] = alpha_cbn * v_tmp + (1 - alpha_cbn) * v_avg[filter]; + + float variance_tmp = fmax(0.0f, v_avg[filter] - powf(m_avg[filter], 2)); + if (inverse_variance) variance[filter] = 1.0f / sqrtf(variance_tmp + epsilon); + else variance[filter] = variance_tmp; + + //if (max_minibatch_index == minibatch_index) + { + if(rolling_mean_gpu) rolling_mean_gpu[filter] = alpha * mean[filter] + (1 - alpha) * rolling_mean_gpu[filter]; + + if(rolling_variance_gpu) rolling_variance_gpu[filter] = alpha * variance_tmp + (1 - alpha) * rolling_variance_gpu[filter]; + } + } +} + +extern "C" void fast_v_cbn_gpu(const float *x, float *mean, int batch, int filters, int spatial, int minibatch_index, int max_minibatch_index, float *m_avg, float *v_avg, float *variance, + const float alpha, float *rolling_mean_gpu, float *rolling_variance_gpu, int inverse_variance, float epsilon) +{ + fast_v_cbn_kernel << <filters, BLOCK, 0, get_cuda_stream() >> >(x, mean, batch, filters, spatial, minibatch_index, max_minibatch_index, m_avg, v_avg, variance, alpha, rolling_mean_gpu, rolling_variance_gpu, inverse_variance, epsilon); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void inverse_variance_kernel(int size, float *src, float *dst, float epsilon) +{ + int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) + dst[index] = 1.0f / sqrtf(src[index] + epsilon); +} + +extern "C" void inverse_variance_ongpu(int size, float *src, float *dst, float epsilon) +{ + const int num_blocks = size / BLOCK + 1; + inverse_variance_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(size, src, dst, epsilon); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void normalize_scale_bias_kernel(int N, float *x, float *mean, float *variance, float *scales, float *biases, int batch, int filters, int spatial, int inverse_variance, float epsilon) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index >= N) return; + int f = (index / spatial) % filters; + + float val = 0; + if(inverse_variance) val = (x[index] - mean[f]) * variance[f]; + else val = (x[index] - mean[f]) / (sqrtf(variance[f] + epsilon)); + val *= scales[f]; + val += biases[f]; + + if (!isnan(val) && !isinf(val)) + x[index] = val; +} + +extern "C" void normalize_scale_bias_gpu(float *x, float *mean, float *variance, float *scales, float *biases, int batch, int filters, int spatial, int inverse_variance, float epsilon) +{ + const int current_size = batch * filters * spatial; + const int num_blocks = get_number_of_blocks(current_size, BLOCK); + + normalize_scale_bias_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(current_size, x, mean, variance, scales, biases, batch, filters, spatial, inverse_variance, epsilon); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void mean_gpu(float *x, int batch, int filters, int spatial, float *mean) +{ + mean_kernel<<<cuda_gridsize(filters), BLOCK, 0, get_cuda_stream() >>>(x, batch, filters, spatial, mean); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void variance_gpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) +{ + variance_kernel<<<cuda_gridsize(filters), BLOCK, 0, get_cuda_stream() >>>(x, mean, batch, filters, spatial, variance); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void axpy_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY) +{ + axpy_ongpu_offset(N, ALPHA, X, 0, INCX, Y, 0, INCY); +} + +extern "C" void pow_ongpu(int N, float ALPHA, float * X, int INCX, float * Y, int INCY) +{ + pow_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX, Y, INCY); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void axpy_ongpu_offset(int N, float ALPHA, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY) +{ + axpy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, OFFX, INCX, Y, OFFY, INCY); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void copy_ongpu(int N, float * X, int INCX, float * Y, int INCY) +{ + copy_ongpu_offset(N, X, 0, INCX, Y, 0, INCY); +} + +extern "C" void simple_copy_ongpu(int size, float *src, float *dst) +{ + const int num_blocks = size / BLOCK + 1; + simple_copy_kernel << <num_blocks, BLOCK, 0, get_cuda_stream() >> >(size, src, dst); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void memcpy_ongpu(void *dst, void *src, int size_bytes) +{ + CHECK_CUDA(cudaMemcpyAsync(dst, src, size_bytes, cudaMemcpyDefault, get_cuda_stream())); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void mul_ongpu(int N, float * X, int INCX, float * Y, int INCY) +{ + mul_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, INCX, Y, INCY); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void copy_ongpu_offset(int N, float * X, int OFFX, int INCX, float * Y, int OFFY, int INCY) +{ + copy_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, X, OFFX, INCX, Y, OFFY, INCY); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void flatten_kernel(int N, float *x, int spatial, int layers, int batch, int forward, float *out) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i >= N) return; + int in_s = i%spatial; + i = i/spatial; + int in_c = i%layers; + i = i/layers; + int b = i; + + int i1 = b*layers*spatial + in_c*spatial + in_s; + int i2 = b*layers*spatial + in_s*layers + in_c; + + if (forward) out[i2] = x[i1]; + else out[i1] = x[i2]; +} + +extern "C" void flatten_ongpu(float *x, int spatial, int layers, int batch, int forward, float *out) +{ + int size = spatial*batch*layers; + flatten_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, spatial, layers, batch, forward, out); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void reorg_ongpu(float *x, int w, int h, int c, int batch, int stride, int forward, float *out) +{ + int size = w*h*c*batch; + reorg_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, x, w, h, c, batch, stride, forward, out); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void mask_gpu_new_api(int N, float * X, float mask_num, float * mask, float val) +{ + mask_kernel_new_api <<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, mask_num, mask, val); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void mask_ongpu(int N, float * X, float mask_num, float * mask) +{ + mask_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, X, mask_num, mask); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void const_ongpu(int N, float ALPHA, float * X, int INCX) +{ + const_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void constrain_ongpu(int N, float ALPHA, float * X, int INCX) +{ + constrain_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void constrain_min_max_ongpu(int N, float MIN, float MAX, float * X, int INCX) +{ + constrain_min_max_kernel << <cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >> >(N, MIN, MAX, X, INCX); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +extern "C" void scal_ongpu(int N, float ALPHA, float * X, int INCX) +{ + scal_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void scal_add_ongpu(int N, float ALPHA, float BETA, float * X, int INCX) +{ + scal_add_kernel << <cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >> >(N, ALPHA, BETA, X, INCX); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void supp_ongpu(int N, float ALPHA, float * X, int INCX) +{ + supp_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream() >>>(N, ALPHA, X, INCX); + CHECK_CUDA(cudaPeekAtLastError()); +} + +extern "C" void fill_ongpu(int N, float ALPHA, float * X, int INCX) +{ + //fill_kernel<<<cuda_gridsize(N), BLOCK, 0, get_cuda_stream()>>>(N, ALPHA, X, INCX); + //CHECK_CUDA(cudaPeekAtLastError()); + fill_kernel << <get_number_of_blocks(N, BLOCK), BLOCK, 0, get_cuda_stream() >> >(N, ALPHA, X, INCX); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void gradient_centralization_kernel(int filters, int f_size, float *in) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + const int tid = index % WARP_SIZE; + const int f = index / WARP_SIZE; + + if (f >= filters) return; + + float mean = 0; + for (int i = 0; i < f_size; i += WARP_SIZE) { + mean += warpAllReduceSum(in[f*f_size + i + tid]); + } + mean = mean / f_size; + for (int i = 0; i < f_size; i += WARP_SIZE) { + in[f*f_size + i + tid] -= mean; + } + +} + +extern "C" void gradient_centralization_gpu(int w, int h, int c, int f, float *in) +{ + const int size = f * WARP_SIZE; + const int f_size = c * h * w; + if (f_size % WARP_SIZE == 0) { + + gradient_centralization_kernel << <get_number_of_blocks(size, BLOCK), BLOCK, 0, get_cuda_stream() >> > (f, f_size, in); + CHECK_CUDA(cudaPeekAtLastError()); + } +} + +__device__ float relu(float src) { + if (src > 0) return src; + return 0; +} + +__device__ float lrelu(float src) { + const float eps = 0.001; + if (src > eps) return src; + return eps; +} + +__device__ float grad_relu(float src) { + return (src > 0); +} + +__device__ float grad_lrelu(float src) { + const float eps = 0.001; + return (src > eps); +} + +__global__ void shortcut_singlelayer_simple_kernel(int size, int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) +{ + const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + + int src_id = id; + const int src_i = src_id % src_outputs; + src_id /= src_outputs; + int src_b = src_id; + + float out_val = in[id]; + + int add_outputs = outputs_of_layers_gpu[0]; + if (src_i < add_outputs) { + int add_index = add_outputs*src_b + src_i; + + float *add = layers_output_gpu[0]; + out_val += add[add_index]; + } + out[id] = out_val; +} + +__global__ void shortcut_multilayer_kernel(int size, int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) +{ + const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + + // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) + const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) + int step = 0; + if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 + + int src_id = id; + const int src_i = src_id % src_outputs; + src_id /= src_outputs; + int src_b = src_id; + + float sum = 1, max_val = -FLT_MAX; + if (weights_gpu && weights_normalization) { + if (weights_normalization == SOFTMAX_NORMALIZATION) { + for (int i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + const float w = weights_gpu[weights_index]; + if (max_val < w) max_val = w; + } + } + const float eps = 0.0001; + sum = eps; + for (int i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + const float w = weights_gpu[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) sum += lrelu(w); + else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); + } + } + + float out_val = 0; + + if (weights_gpu) { + float w = weights_gpu[src_i / step]; + if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + out_val = in[id] * w; // [0 or c or (c, h ,w)] + } + else out_val = in[id]; + + // layers + for (int i = 0; i < n; ++i) { + int add_outputs = outputs_of_layers_gpu[i]; + if (src_i < add_outputs) { + int add_index = add_outputs*src_b + src_i; + + float *add = layers_output_gpu[i]; + + if (weights_gpu) { + const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] + float w = weights_gpu[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + out_val += add[add_index] * w; // [0 or c or (c, h ,w)] + } + else out_val += add[add_index]; + } + } + out[id] = out_val; +} + +extern "C" void shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, float **layers_output_gpu, float *out, float *in, float *weights_gpu, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) +{ + //printf(" src_outputs = %d, batch = %d, n = %d \n", src_outputs, batch, n); + int size = batch * src_outputs; + if (nweights == 0 && n == 1) { + shortcut_singlelayer_simple_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, src_outputs, batch, n, outputs_of_layers_gpu, layers_output_gpu, out, in, weights_gpu, nweights, weights_normalization); + } + else { + shortcut_multilayer_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, src_outputs, batch, n, outputs_of_layers_gpu, layers_output_gpu, out, in, weights_gpu, nweights, weights_normalization); + } + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void backward_shortcut_multilayer_kernel(int size, int src_outputs, int batch, int n, int *outputs_of_layers_gpu, + float **layers_delta_gpu, float *delta_out, float *delta_in, float *weights_gpu, float *weight_updates_gpu, int nweights, float *in, float **layers_output_gpu, WEIGHTS_NORMALIZATION_T weights_normalization) +{ + const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + + // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) + const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) + int step = 0; + if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 + + int src_id = id; + const int src_i = src_id % src_outputs; + src_id /= src_outputs; + int src_b = src_id; + + float grad = 1, sum = 1, max_val = -FLT_MAX; + int i; + if (weights_gpu && weights_normalization) { + if (weights_normalization == SOFTMAX_NORMALIZATION) { + for (int i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + float w = weights_gpu[weights_index]; + if (max_val < w) max_val = w; + } + } + const float eps = 0.0001; + sum = eps; + for (i = 0; i < (n + 1); ++i) { + const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] + const float w = weights_gpu[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) sum += lrelu(w); + else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); + } + + } + + if (weights_gpu) { + float w = weights_gpu[src_i / step]; + if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + if (weights_normalization == RELU_NORMALIZATION) grad = w; + else if (weights_normalization == SOFTMAX_NORMALIZATION) grad = w*(1-w); + + delta_out[id] += delta_in[id] * w; // [0 or c or (c, h ,w)] + float weights_update_tmp = delta_in[id] * in[id] * grad;// / step; + + if (layer_step == 1 && (size/32) > (id/32 + 1)) { + if (isnan(weights_update_tmp) || isinf(weights_update_tmp)) { + weights_update_tmp = 0; + } + float wu = warpAllReduceSum(weights_update_tmp); + if (threadIdx.x % 32 == 0) { + if (!isnan(wu) && !isinf(wu)) + atomicAdd(&weight_updates_gpu[src_i / step], wu); + } + } + else { + if (!isnan(weights_update_tmp) && !isinf(weights_update_tmp)) + atomicAdd(&weight_updates_gpu[src_i / step], weights_update_tmp); + //weight_updates_gpu[src_i / step] += weights_update_tmp; + } + } + else delta_out[id] += delta_in[id]; + + // layers + for (int i = 0; i < n; ++i) { + int add_outputs = outputs_of_layers_gpu[i]; + if (src_i < add_outputs) { + int add_index = add_outputs*src_b + src_i; + int out_index = id; + + float *layer_delta = layers_delta_gpu[i]; + if (weights_gpu) { + float *add = layers_output_gpu[i]; + + const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] + float w = weights_gpu[weights_index]; + if (weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; + else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; + + if (weights_normalization == RELU_NORMALIZATION) grad = w; + else if (weights_normalization == SOFTMAX_NORMALIZATION) grad = w*(1 - w); + + layer_delta[add_index] += delta_in[id] * w; + float weights_update_tmp = delta_in[id] * add[add_index] * grad;// / step; + + if (layer_step == 1 && (size / 32) > (id / 32 + 1)) { + if (isnan(weights_update_tmp) || isinf(weights_update_tmp)) { + weights_update_tmp = 0; + } + float wu = warpAllReduceSum(weights_update_tmp); + if (threadIdx.x % 32 == 0) { + if (!isnan(wu) && !isinf(wu)) + atomicAdd(&weight_updates_gpu[weights_index], wu); + //if(weights_gpu[weights_index] != 1) printf(" wu = %f, weights_update_tmp = %f, w = %f, weights_gpu[weights_index] = %f, grad = %f, weights_normalization = %d ", + // wu, weights_update_tmp, w, weights_gpu[weights_index], grad, weights_normalization); + } + } + else { + if (!isnan(weights_update_tmp) && !isinf(weights_update_tmp)) + atomicAdd(&weight_updates_gpu[weights_index], weights_update_tmp); + //weight_updates_gpu[weights_index] += weights_update_tmp; + } + } + else layer_delta[add_index] += delta_in[id]; + } + } +} + +extern "C" void backward_shortcut_multilayer_gpu(int src_outputs, int batch, int n, int *outputs_of_layers_gpu, + float **layers_delta_gpu, float *delta_out, float *delta_in, float *weights_gpu, float *weight_updates_gpu, int nweights, float *in, float **layers_output_gpu, WEIGHTS_NORMALIZATION_T weights_normalization) +{ + const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) + int step = 0; + if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 + //printf(" nweights = %d, n = %d, layer_step = %d, step = %d \n", nweights, n, layer_step, step); + + //printf(" src_outputs = %d, batch = %d, n = %d \n", src_outputs, batch, n); + int size = batch * src_outputs; + backward_shortcut_multilayer_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, src_outputs, batch, n, outputs_of_layers_gpu, + layers_delta_gpu, delta_out, delta_in, weights_gpu, weight_updates_gpu, nweights, in, layers_output_gpu, weights_normalization); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void shortcut_kernel(int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) +{ + int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + int i = id % minw; + id /= minw; + int j = id % minh; + id /= minh; + int k = id % minc; + id /= minc; + int b = id % batch; + + int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); + int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); + out[out_index] += add[add_index]; +} + +extern "C" void shortcut_gpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) +{ + int minw = (w1 < w2) ? w1 : w2; + int minh = (h1 < h2) ? h1 : h2; + int minc = (c1 < c2) ? c1 : c2; + + int stride = w1/w2; + int sample = w2/w1; + assert(stride == h1/h2); + assert(sample == h2/h1); + if(stride < 1) stride = 1; + if(sample < 1) sample = 1; + + int size = batch * minw * minh * minc; + shortcut_kernel<<<cuda_gridsize(size), BLOCK, 0, get_cuda_stream()>>>(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void simple_input_shortcut_kernel(float *in, int size, float *add, float *out) +{ + int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + + out[id] = in[id] + add[id]; +} + +__global__ void input_shortcut_kernel(float *in, int size, int minw, int minh, int minc, int stride, int sample, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) +{ + int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + int i = id % minw; + id /= minw; + int j = id % minh; + id /= minh; + int k = id % minc; + id /= minc; + int b = id % batch; + + int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); + int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); + out[out_index] = in[out_index] + add[add_index]; +} + +extern "C" void input_shortcut_gpu(float *in, int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) +{ + if (w1 == w2 && h1 == h2 && c1 == c2) { + int size = batch * w1 * h1 * c1; + simple_input_shortcut_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(in, size, add, out); + CHECK_CUDA(cudaPeekAtLastError()); + return; + } + + int minw = (w1 < w2) ? w1 : w2; + int minh = (h1 < h2) ? h1 : h2; + int minc = (c1 < c2) ? c1 : c2; + + int stride = w1 / w2; + int sample = w2 / w1; + assert(stride == h1 / h2); + assert(sample == h2 / h1); + if (stride < 1) stride = 1; + if (sample < 1) sample = 1; + + int size = batch * minw * minh * minc; + //input_shortcut_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(in, size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out); + simple_copy_ongpu(w2 * h2 * c2 * batch, in, out); + shortcut_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(size, minw, minh, minc, stride, sample, batch, w1, h1, c1, add, w2, h2, c2, out); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void smooth_l1_kernel(int n, float *pred, float *truth, float *delta, float *error) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + float diff = truth[i] - pred[i]; + float abs_val = abs(diff); + if(abs_val < 1) { + error[i] = diff * diff; + delta[i] = diff; + } + else { + error[i] = 2*abs_val - 1; + delta[i] = (diff < 0) ? -1 : 1; + } + } +} + +extern "C" void smooth_l1_gpu(int n, float *pred, float *truth, float *delta, float *error) +{ + smooth_l1_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(n, pred, truth, delta, error); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void softmax_x_ent_kernel(int n, float *pred, float *truth, float *delta, float *error) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i < n) { + float t = truth[i]; + float p = pred[i]; + error[i] = (t) ? -log(p) : 0; + delta[i] = t - p; + } +} + +extern "C" void softmax_x_ent_gpu(int n, float *pred, float *truth, float *delta, float *error) +{ + softmax_x_ent_kernel << <cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >> >(n, pred, truth, delta, error); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void l2_kernel(int n, float *pred, float *truth, float *delta, float *error) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + float diff = truth[i] - pred[i]; + error[i] = diff * diff; //I know this is technically wrong, deal with it. + delta[i] = diff; + } +} + +extern "C" void l2_gpu(int n, float *pred, float *truth, float *delta, float *error) +{ + l2_kernel<<<cuda_gridsize(n), BLOCK, 0, get_cuda_stream() >>>(n, pred, truth, delta, error); + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void weighted_sum_kernel(int n, float *a, float *b, float *s, float *c) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); + } +} + +extern "C" void weighted_sum_gpu(float *a, float *b, float *s, int num, float *c) +{ + weighted_sum_kernel<<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(num, a, b, s, c); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void weighted_delta_kernel(int n, float *a, float *b, float *s, float *da, float *db, float *ds, float *dc) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + if(da) da[i] += dc[i] * s[i]; + db[i] += dc[i] * (1-s[i]); + ds[i] += dc[i] * a[i] + dc[i] * -b[i]; + } +} + +extern "C" void weighted_delta_gpu(float *a, float *b, float *s, float *da, float *db, float *ds, int num, float *dc) +{ + weighted_delta_kernel<<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(num, a, b, s, da, db, ds, dc); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void mult_add_into_kernel(int n, float *a, float *b, float *c) +{ + int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(i < n){ + c[i] += a[i]*b[i]; + } +} + +extern "C" void mult_add_into_gpu(int num, float *a, float *b, float *c) +{ + mult_add_into_kernel<<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(num, a, b, c); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__device__ void softmax_device(int n, float *input, float temp, float *output) +{ + int i; + float sum = 0; + float largest = -INFINITY; + for(i = 0; i < n; ++i){ + int val = input[i]; + largest = (val>largest) ? val : largest; + } + for(i = 0; i < n; ++i){ + float e = exp(input[i]/temp - largest/temp); + sum += e; + output[i] = e; + } + for(i = 0; i < n; ++i){ + output[i] /= sum; + } +} + +__global__ void softmax_kernel(int n, int offset, int batch, float *input, float temp, float *output) +{ + int b = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if(b >= batch) return; + softmax_device(n, input + b*offset, temp, output + b*offset); +} + +extern "C" void softmax_gpu(float *input, int n, int offset, int groups, float temp, float *output) +{ + int inputs = n; + int batch = groups; + softmax_kernel<<<cuda_gridsize(batch), BLOCK, 0, get_cuda_stream()>>>(inputs, offset, batch, input, temp, output); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__device__ void softmax_device_new_api(float *input, int n, float temp, int stride, float *output) +{ + int i; + float sum = 0; + float largest = -INFINITY; + for (i = 0; i < n; ++i) { + int val = input[i*stride]; + largest = (val>largest) ? val : largest; + } + for (i = 0; i < n; ++i) { + float e = expf(input[i*stride] / temp - largest / temp); + sum += e; + output[i*stride] = e; + } + for (i = 0; i < n; ++i) { + output[i*stride] /= sum; + } +} + +__global__ void softmax_kernel_new_api(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) +{ + int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= batch*groups) return; + int b = id / groups; + int g = id % groups; + softmax_device_new_api(input + b*batch_offset + g*group_offset, n, temp, stride, output + b*batch_offset + g*group_offset); +} + +extern "C" void softmax_gpu_new_api(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) +{ + softmax_kernel_new_api << <cuda_gridsize(batch*groups), BLOCK, 0, get_cuda_stream() >> >(input, n, batch, batch_offset, groups, group_offset, stride, temp, output); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void upsample_kernel(size_t N, float *x, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) +{ + size_t i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (i >= N) return; + int out_index = i; + int out_w = i % (w*stride); + i = i / (w*stride); + int out_h = i % (h*stride); + i = i / (h*stride); + int out_c = i%c; + i = i / c; + int b = i%batch; + + int in_w = out_w / stride; + int in_h = out_h / stride; + int in_c = out_c; + + int in_index = b*w*h*c + in_c*w*h + in_h*w + in_w; + + + if (forward) out[out_index] += scale * x[in_index]; + else atomicAdd(x + in_index, scale * out[out_index]); +} + +extern "C" void upsample_gpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) +{ + size_t size = w*h*c*batch*stride*stride; + upsample_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> >(size, in, w, h, c, batch, stride, forward, scale, out); + CHECK_CUDA(cudaPeekAtLastError()); +} + +__global__ void softmax_tree_kernel(float *input, int spatial, int batch, int stride, float temp, float *output, int groups, int *group_size, int *group_offset) +{ + int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= spatial*batch*groups) return; + int s = id % spatial; + id = id / spatial; + int g = id % groups; + int b = id / groups; + int goff = group_offset[g] * spatial; + int boff = b*stride; + softmax_device_new_api(input + goff + boff + s, group_size[g], temp, spatial, output + goff + boff + s); +} + +extern "C" void softmax_tree_gpu(float *input, int spatial, int batch, int stride, float temp, float *output, tree hier) +{ + int *tree_groups_size = cuda_make_int_array_new_api(hier.group_size, hier.groups); + int *tree_groups_offset = cuda_make_int_array_new_api(hier.group_offset, hier.groups); + /* + static int *tree_groups_size = 0; + static int *tree_groups_offset = 0; + if(!tree_groups_size){ + tree_groups_size = cuda_make_int_array(hier.group_size, hier.groups); + tree_groups_offset = cuda_make_int_array(hier.group_offset, hier.groups); + } + */ + int num = spatial*batch*hier.groups; + softmax_tree_kernel <<<cuda_gridsize(num), BLOCK, 0, get_cuda_stream() >>>(input, spatial, batch, stride, temp, output, hier.groups, tree_groups_size, tree_groups_offset); + CHECK_CUDA(cudaPeekAtLastError()); + cuda_free((float *)tree_groups_size); + cuda_free((float *)tree_groups_offset); +} + + +__global__ void fix_nan_and_inf_kernel(float *input, size_t size) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + float val = input[index]; + if (isnan(val) || isinf(val)) { + input[index] = 1.0f / (fabs((float)index) + 1); // pseudo random value + } + } +} + +extern "C" void fix_nan_and_inf(float *input, size_t size) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + fix_nan_and_inf_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(input, size); + CHECK_CUDA(cudaPeekAtLastError()); + //CHECK_CUDA(cudaDeviceSynchronize()); +} + + +__global__ void reset_nan_and_inf_kernel(float *input, size_t size) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + float val = input[index]; + if (isnan(val) || isinf(val)) { + input[index] = 0; + } + } +} + +extern "C" void reset_nan_and_inf(float *input, size_t size) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + reset_nan_and_inf_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(input, size); + CHECK_CUDA(cudaPeekAtLastError()); + //CHECK_CUDA(cudaDeviceSynchronize()); +} + + + +__global__ void is_nan_or_inf_kernel(float *input, size_t size, int *pinned_return) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + float val = input[index]; + if (isnan(val) || isinf(val)) + *pinned_return = 1; + } +} + +extern "C" int is_nan_or_inf(float *input, size_t size) +{ + int *pinned_return; + CHECK_CUDA(cudaHostAlloc(&pinned_return, sizeof(int), cudaHostRegisterMapped)); + *pinned_return = 0; + + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + is_nan_or_inf_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(input, size, pinned_return); + CHECK_CUDA(cudaDeviceSynchronize()); + int ret_val = *pinned_return; + + CHECK_CUDA(cudaFreeHost(pinned_return)); + return ret_val; +} + +__global__ void add_3_arrays_activate_kernel(float *a1, float *a2, float *a3, size_t size, ACTIVATION a, float *dst) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + float val = 0; + if (a1) val += a1[index]; + if (a2) val += a2[index]; + if (a3) val += a3[index]; + if (a == LOGISTIC) val = 1.f / (1.f + expf(-val)); + else if (a == TANH) val = (2 / (1 + expf(-2 * val)) - 1); + else if (a == LEAKY) val = (val < 0) ? val*0.1 : val; + dst[index] = val; + } +} + +extern "C" void add_3_arrays_activate(float *a1, float *a2, float *a3, size_t size, ACTIVATION a, float *dst) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + if (!(a == LOGISTIC || a == TANH || a == LEAKY || a == LINEAR)) { + printf(" add_3_arrays_activate() doesn't support activation %d, it supports only LOGISTIC and TANH \n", a); + exit(EXIT_FAILURE); + } + add_3_arrays_activate_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(a1, a2, a3, size, a, dst); +} + + +__global__ void sum_of_mults_kernel(float *a1, float *a2, float *b1, float *b2, size_t size, float *dst) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + dst[index] = a1[index] * a2[index] + b1[index] * b2[index]; + } +} + +extern "C" void sum_of_mults(float *a1, float *a2, float *b1, float *b2, size_t size, float *dst) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + sum_of_mults_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(a1, a2, b1, b2, size, dst); +} + + +__global__ void activate_and_mult_kernel(float *a1, float *a2, size_t size, ACTIVATION a, float *dst) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + float val = a1[index]; + if (a == TANH) val = (2 / (1 + expf(-2 * val)) - 1); + else if (a == LEAKY) val = (val < 0) ? val*0.1 : val; + dst[index] = val * a2[index]; + } +} + +extern "C" void activate_and_mult(float *a1, float *a2, size_t size, ACTIVATION a, float *dst) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + if (!(a == TANH || a == LEAKY || a == LINEAR)) { + printf(" activat_and_mult() doesn't support activation %d, it supports only TANH \n", a); + exit(EXIT_FAILURE); + } + activate_and_mult_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(a1, a2, size, a, dst); +} + + + +__global__ void scale_channels_kernel(float *in_w_h_c, int size, int channel_size, int batch_size, int scale_wh, float *scales_c, float *out) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + if (scale_wh) { + int osd_index = index % channel_size + (index / batch_size)*channel_size; + + out[index] = in_w_h_c[index] * scales_c[osd_index]; + } + else { + out[index] = in_w_h_c[index] * scales_c[index / channel_size]; + } + } +} + +extern "C" void scale_channels_gpu(float *in_w_h_c, int size, int channel_size, int batch_size, int scale_wh, float *scales_c, float *out) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + scale_channels_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(in_w_h_c, size, channel_size, batch_size, scale_wh, scales_c, out); + CHECK_CUDA(cudaPeekAtLastError()); +} + + + + +__global__ void backward_scale_channels_kernel(float *in_w_h_c_delta, int size, int channel_size, int batch_size, int scale_wh, + float *in_scales_c, float *out_from_delta, + float *in_from_output, float *out_state_delta) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + + if (index < size) { + + if (scale_wh) + { + int osd_index = index % channel_size + (index / batch_size)*channel_size; + + //out_state_delta[osd_index] += in_w_h_c_delta[index] * in_from_output[index]; // l.delta * from (should be divided by channel_size?) + atomicAdd(&out_state_delta[osd_index], in_w_h_c_delta[index] * in_from_output[index] / channel_size); // l.delta * from + + out_from_delta[index] += in_scales_c[osd_index] * in_w_h_c_delta[index]; // input * l.delta // atomic isn't required here + + } + else { + int osd_index = index / channel_size; + //out_state_delta[osd_index] += in_w_h_c_delta[index] * in_from_output[index]; // l.delta * from (should be divided by channel_size?) + + int warp_id = index / 32; + int index_warp_start = warp_id * 32; + int osd_index_warp_start = index_warp_start / channel_size; + int osd_index_warp_end = (index_warp_start + 31) / channel_size; + + if (osd_index_warp_start == osd_index_warp_end) // all thread in warp process the same channel + { + float sum = warpAllReduceSum(in_w_h_c_delta[index] * in_from_output[index]); // l.delta * from + if (threadIdx.x % 32 == 0) { + atomicAdd(&out_state_delta[osd_index], sum); + //out_state_delta[osd_index] += sum; + } + } + else { + atomicAdd(&out_state_delta[osd_index], in_w_h_c_delta[index] * in_from_output[index]); // l.delta * from + } + + out_from_delta[index] += in_scales_c[osd_index] * in_w_h_c_delta[index]; // input * l.delta // atomic isn't required here + } + } +} + +extern "C" void backward_scale_channels_gpu(float *in_w_h_c_delta, int size, int channel_size, int batch_size, int scale_wh, + float *in_scales_c, float *out_from_delta, + float *in_from_output, float *out_state_delta) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + backward_scale_channels_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (in_w_h_c_delta, size, channel_size, batch_size, scale_wh, + in_scales_c, out_from_delta, + in_from_output, out_state_delta); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void sam_kernel(float *in_w_h_c, int size, int channel_size, float *scales_c, float *out) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + out[index] = in_w_h_c[index] * scales_c[index]; + } +} + +extern "C" void sam_gpu(float *in_w_h_c, int size, int channel_size, float *scales_c, float *out) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + sam_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> >(in_w_h_c, size, channel_size, scales_c, out); + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void backward_sam_kernel(float *in_w_h_c_delta, int size, int channel_size, + float *in_scales_c, float *out_from_delta, + float *in_from_output, float *out_state_delta) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + if (index < size) { + out_state_delta[index] += in_w_h_c_delta[index] * in_from_output[index]; // l.delta * from (should be divided by channel_size?) + out_from_delta[index] += in_scales_c[index] * in_w_h_c_delta[index]; // input * l.delta + + //out_state_delta[index] += in_w_h_c_delta[index]; + //out_from_delta[index] = in_w_h_c_delta[index]; + } +} + +extern "C" void backward_sam_gpu(float *in_w_h_c_delta, int size, int channel_size, + float *in_scales_c, float *out_from_delta, + float *in_from_output, float *out_state_delta) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + backward_sam_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (in_w_h_c_delta, size, channel_size, + in_scales_c, out_from_delta, + in_from_output, out_state_delta); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void smooth_rotate_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, int angle, int reverse) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + const int kernel_area = kernel_size * kernel_size; + const int i = index * kernel_area; + + const int stage_step = (nweights / kernel_area) / 4; // 4 stages + const int stage_id = index / stage_step; + + // nweights = (c / groups) * n * size * size; + // kernel_area = size*size + + if (i < nweights) + { + // rotate left or right + if (reverse) angle = -angle; + + const float cos_a = cosf(angle * 3.14159265 / 180); + const float sin_a = sinf(angle * 3.14159265 / 180); + const int x_c = kernel_size / 2; + const int y_c = kernel_size / 2; + + float dropout_sum = 0; + + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + // Xsource = x*cos(alpha) + y*sin(alpha) + // Ysource = -x*sin(alpha) + y*cos(alpha) + + float x_s = x_c + (x - x_c)*cos_a + (y - y_c)*sin_a; + float y_s = y_c - (x - x_c)*sin_a + (y - y_c)*cos_a; + + int x_0 = floorf(x_s); // round down + int x_1 = ceilf(x_s); // round up + if (x_0 == x_1) x_1 = x_0 + 1; + int y_0 = floorf(y_s); + int y_1 = ceilf(y_s); + if (y_0 == y_1) y_1 = y_0 + 1; + + float c_x_0 = x_1 - x_s; + float c_x_1 = x_s - x_0; + float c_y_0 = y_1 - y_s; + float c_y_1 = y_s - y_0; + + + float val = 0; + if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; + else dropout_sum += c_x_0 * c_y_0; + + if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; + else dropout_sum += c_x_1 * c_y_0; + + if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; + else dropout_sum += c_x_0 * c_y_1; + + if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; + else dropout_sum += c_x_1 * c_y_1; + + weight_deform_gpu[x + y*kernel_size + i] = val; + } + } + + // compensate for dropped items + const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + weight_deform_gpu[x + y*kernel_size + i] *= coef; + } + } + } +} + + +extern "C" void smooth_rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse) +{ + const int kernel_area = size*size; + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); + smooth_rotate_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, angle, reverse); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void stretch_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, float scale, int reverse) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + const int kernel_area = kernel_size * kernel_size; + const int i = index * kernel_area; + + const int stage_step = (nweights / kernel_area) / 4; // 4 stages + const int stage_id = index / stage_step; + + // nweights = (c / groups) * n * size * size; + // kernel_area = size*size + + if (i < nweights) + { + + if (stage_id == 0) { + // simple copy + for (int x = 0; x < kernel_size; ++x) { + for (int y = 0; y < kernel_size; ++y) { + weight_deform_gpu[x + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; + } + } + } + else if (stage_id > 0) + { + if (stage_id == 1) scale = 0.65; + else if (stage_id == 2) scale = 0.8; + else if (stage_id == 3) scale = 1.3; + + if (reverse) scale = 1 / scale; + + const int x_c = kernel_size / 2; + const int y_c = kernel_size / 2; + + float dropout_sum = 0; + + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + // Xsource = x_c + (x_d - x_c) / scale + // Ysource = y_c + (y_d - y_c) / scale + + float x_s = x_c + (x - x_c) / scale; + float y_s = y_c + (y - y_c) / scale; + + int x_0 = floorf(x_s); // round down + int x_1 = ceilf(x_s); // round up + if (x_0 == x_1) x_1 = x_0 + 1; + int y_0 = floorf(y_s); + int y_1 = ceilf(y_s); + if (y_0 == y_1) y_1 = y_0 + 1; + + float c_x_0 = x_1 - x_s; + float c_x_1 = x_s - x_0; + float c_y_0 = y_1 - y_s; + float c_y_1 = y_s - y_0; + + float val = 0; + if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; + else dropout_sum += c_x_0 * c_y_0; + + if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; + else dropout_sum += c_x_1 * c_y_0; + + if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; + else dropout_sum += c_x_0 * c_y_1; + + if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; + else dropout_sum += c_x_1 * c_y_1; + + weight_deform_gpu[x + y*kernel_size + i] = val; + } + } + + // compensate for dropped items + //const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + //if (scale < 1) weight_deform_gpu[x + y*kernel_size + i] /= scale;// *= coef; + weight_deform_gpu[x + y*kernel_size + i] /= scale;// *= coef; + } + } + } + } +} + + +extern "C" void stretch_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, float scale, int reverse) +{ + const int kernel_area = size*size; + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); + stretch_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, scale, reverse); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void sway_and_flip_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, int angle, int reverse) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + const int kernel_area = kernel_size * kernel_size; + const int i = index * kernel_area; + + const int stage_step = (nweights / kernel_area) / 4; // 4 stages + const int stage_id = index / stage_step; + + // nweights = (c / groups) * n * size * size; + // kernel_area = size*size + + if (i < nweights) + { + + if (stage_id == 0) { + // simple copy + for (int x = 0; x < kernel_size; ++x) { + for (int y = 0; y < kernel_size; ++y) { + weight_deform_gpu[x + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; + } + } + } + else if (stage_id == 1 || stage_id == 2) + { + // rotate left or right + if (stage_id == 2) angle = -angle; + if (reverse) angle = -angle; + + const float cos_a = cosf(angle * 3.14159265 / 180); + const float sin_a = sinf(angle * 3.14159265 / 180); + const int x_c = kernel_size / 2; + const int y_c = kernel_size / 2; + + float dropout_sum = 0; + + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + // Xsource = x*cos(alpha) + y*sin(alpha) + // Ysource = -x*sin(alpha) + y*cos(alpha) + + float x_s = x_c + (x - x_c)*cos_a + (y - y_c)*sin_a; + float y_s = y_c - (x - x_c)*sin_a + (y - y_c)*cos_a; + + int x_0 = floorf(x_s); // round down + int x_1 = ceilf(x_s); // round up + if (x_0 == x_1) x_1 = x_0 + 1; + int y_0 = floorf(y_s); + int y_1 = ceilf(y_s); + if (y_0 == y_1) y_1 = y_0 + 1; + + float c_x_0 = x_1 - x_s; + float c_x_1 = x_s - x_0; + float c_y_0 = y_1 - y_s; + float c_y_1 = y_s - y_0; + + float val = 0; + if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; + else dropout_sum += c_x_0 * c_y_0; + + if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; + else dropout_sum += c_x_1 * c_y_0; + + if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; + else dropout_sum += c_x_0 * c_y_1; + + if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; + else dropout_sum += c_x_1 * c_y_1; + + weight_deform_gpu[x + y*kernel_size + i] = val; + } + } + + // compensate for dropped items + const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + weight_deform_gpu[x + y*kernel_size + i] *= coef; + } + } + } + else if (stage_id == 3) + { + // flip + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + weight_deform_gpu[(kernel_size - x - 1) + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; + } + } + } + } +} + + +extern "C" void sway_and_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse) +{ + const int kernel_area = size*size; + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); + sway_and_flip_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, angle, reverse); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + + + + + +__global__ void rotate_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, int reverse) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + const int kernel_area = kernel_size * kernel_size; + const int i = index * kernel_area; + + const int stage_step = (nweights / kernel_area) / 4; // 4 stages + const int stage_id = index / stage_step; + + // nweights = (c / groups) * n * size * size; + // kernel_area = size*size + + if (i < nweights) + { + // if(reverse) + + if (stage_id == 0) { + // simple copy + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + const int src_i = x + y*kernel_size + i; + const int dst_i = x + y*kernel_size + i; + if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; + else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; + } + } + } + else if (stage_id == 1) + { + // 90 degree clockwise rotation - 1 + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + const int src_i = x + y*kernel_size + i; + const int dst_i = (kernel_size - 1 - y) + x*kernel_size + i; + if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; + else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; + } + } + } + else if (stage_id == 2) + { + // 180 degree clockwise rotation - 2 + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + const int src_i = x + y*kernel_size + i; + const int dst_i = (kernel_size - 1 - x) + (kernel_size - 1 - y)*kernel_size + i; + if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; + else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; + } + } + } + else if (stage_id == 3) + { + // 270 degree clockwise rotation - 3 + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + const int src_i = x + y*kernel_size + i; + const int dst_i = y + (kernel_size - 1 - x)*kernel_size + i; + if (reverse) weight_deform_gpu[src_i] = src_weight_gpu[dst_i]; + else weight_deform_gpu[dst_i] = src_weight_gpu[src_i]; + } + } + } + } +} + + +extern "C" void rotate_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int reverse) +{ + const int kernel_area = size*size; + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); + rotate_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, reverse); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void stretch_sway_flip_weights_kernel(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int kernel_size, float angle, int reverse) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + const int kernel_area = kernel_size * kernel_size; + const int i = index * kernel_area; + + const int stage_step = (nweights / kernel_area) / 8; // 8 stages + const int stage_id = index / stage_step; + + // nweights = (c / groups) * n * size * size; + // kernel_area = size*size + + if (i < nweights) + { + + if (stage_id == 0) { + // simple copy + for (int x = 0; x < kernel_size; ++x) { + for (int y = 0; y < kernel_size; ++y) { + weight_deform_gpu[x + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; + } + } + } + else if (stage_id == 1 || stage_id == 2 || stage_id == 3 || stage_id == 4) + { + float scale = 0.5; + if (stage_id == 1) scale = 0.65; + else if (stage_id == 2) scale = 0.8; + else if (stage_id == 3) scale = 1.2; + else if (stage_id == 4) scale = 1.4; + + if (reverse) scale = 1 / scale; + + const int x_c = kernel_size / 2; + const int y_c = kernel_size / 2; + + float dropout_sum = 0; + + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + // Xsource = x_c + (x_d - x_c) / scale + // Ysource = y_c + (y_d - y_c) / scale + + float x_s = x_c + (x - x_c) / scale; + float y_s = y_c + (y - y_c) / scale; + + int x_0 = floorf(x_s); // round down + int x_1 = ceilf(x_s); // round up + if (x_0 == x_1) x_1 = x_0 + 1; + int y_0 = floorf(y_s); + int y_1 = ceilf(y_s); + if (y_0 == y_1) y_1 = y_0 + 1; + + float c_x_0 = x_1 - x_s; + float c_x_1 = x_s - x_0; + float c_y_0 = y_1 - y_s; + float c_y_1 = y_s - y_0; + + float val = 0; + if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; + else dropout_sum += c_x_0 * c_y_0; + + if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; + else dropout_sum += c_x_1 * c_y_0; + + if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; + else dropout_sum += c_x_0 * c_y_1; + + if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; + else dropout_sum += c_x_1 * c_y_1; + + weight_deform_gpu[x + y*kernel_size + i] = val; + } + } + + // compensate for dropped items + //const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + if(scale > 1) + weight_deform_gpu[x + y*kernel_size + i] /= scale;// *= coef; + } + } + } + else if (stage_id == 5 || stage_id == 6) + { + // rotate left or right + if (stage_id == 6) angle = -angle; + if (reverse) angle = -angle; + + const float cos_a = cosf(angle * 3.14159265 / 180); + const float sin_a = sinf(angle * 3.14159265 / 180); + const int x_c = kernel_size / 2; + const int y_c = kernel_size / 2; + + float dropout_sum = 0; + + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + // Xsource = x*cos(alpha) + y*sin(alpha) + // Ysource = -x*sin(alpha) + y*cos(alpha) + + float x_s = x_c + (x - x_c)*cos_a + (y - y_c)*sin_a; + float y_s = y_c - (x - x_c)*sin_a + (y - y_c)*cos_a; + + int x_0 = floorf(x_s); // round down + int x_1 = ceilf(x_s); // round up + if (x_0 == x_1) x_1 = x_0 + 1; + int y_0 = floorf(y_s); + int y_1 = ceilf(y_s); + if (y_0 == y_1) y_1 = y_0 + 1; + + float c_x_0 = x_1 - x_s; + float c_x_1 = x_s - x_0; + float c_y_0 = y_1 - y_s; + float c_y_1 = y_s - y_0; + + float val = 0; + if (x_0 >= 0 && x_0 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_0 + y_0*kernel_size + i] * c_x_0 * c_y_0; + else dropout_sum += c_x_0 * c_y_0; + + if (x_1 >= 0 && x_1 < kernel_size && y_0 >= 0 && y_0 < kernel_size) val += src_weight_gpu[x_1 + y_0*kernel_size + i] * c_x_1 * c_y_0; + else dropout_sum += c_x_1 * c_y_0; + + if (x_0 >= 0 && x_0 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_0 + y_1*kernel_size + i] * c_x_0 * c_y_1; + else dropout_sum += c_x_0 * c_y_1; + + if (x_1 >= 0 && x_1 < kernel_size && y_1 >= 0 && y_1 < kernel_size) val += src_weight_gpu[x_1 + y_1*kernel_size + i] * c_x_1 * c_y_1; + else dropout_sum += c_x_1 * c_y_1; + + weight_deform_gpu[x + y*kernel_size + i] = val; + } + } + + // compensate for dropped items + const float coef = (kernel_size*kernel_size) / (kernel_size*kernel_size - dropout_sum); + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + weight_deform_gpu[x + y*kernel_size + i] *= coef; + } + } + } + else if (stage_id == 7) + { + // flip + for (int y = 0; y < kernel_size; ++y) { + for (int x = 0; x < kernel_size; ++x) { + weight_deform_gpu[(kernel_size - x - 1) + y*kernel_size + i] = src_weight_gpu[x + y*kernel_size + i]; + } + } + } + } +} + + +extern "C" void stretch_sway_flip_weights_gpu(const float *src_weight_gpu, float *weight_deform_gpu, int nweights, int n, int size, int angle, int reverse) +{ + const int kernel_area = size*size; + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(nweights / kernel_area, block_size); + stretch_sway_flip_weights_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_weight_gpu, weight_deform_gpu, nweights, n, size, angle, reverse); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void reduce_and_expand_array_kernel(const float *src_gpu, float *dst_gpu, int current_size, int groups) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + + if (index < current_size) { + float val = 0; + for (int i = 0; i < groups; ++i) { + val += src_gpu[index + i*current_size]; + } + for (int i = 0; i < groups; ++i) { + dst_gpu[index + i*current_size] = val / groups; + } + } +} + +extern "C" void reduce_and_expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups) +{ + const int current_size = size / groups; + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(current_size, block_size); + reduce_and_expand_array_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_gpu, dst_gpu, current_size, groups); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void expand_array_kernel(const float *src_gpu, float *dst_gpu, int current_size, int groups) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + + if (index < current_size) { + for (int i = 0; i < groups; ++i) { + dst_gpu[index + i*current_size] = src_gpu[index]; + } + } +} + +extern "C" void expand_array_gpu(const float *src_gpu, float *dst_gpu, int size, int groups) +{ + const int current_size = size / groups; + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(current_size, block_size); + expand_array_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_gpu, dst_gpu, current_size, groups); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void mult_inverse_array_kernel(const float *src_gpu, float *dst_gpu, int size, const float eps, + float divider, const float clip, const float abs_add) +{ + const int index = blockIdx.x*blockDim.x + threadIdx.x; + + if (index < size) { + float val = src_gpu[index]; + float sign = (val < 0) ? -1 : 1; + // eps = 1 by default + // eps = 2 - lower delta + // eps = 0 - higher delta (linear) + // eps = -1 - high delta (inverse number) + // = (abs(x)*10+1)^(-1) + float unsigned_val = powf(fabs(val)*10 + abs_add, eps); + unsigned_val = unsigned_val / divider; + if (unsigned_val > clip && clip != 0.0) unsigned_val = clip; + if (isnan(unsigned_val) || isinf(unsigned_val)) unsigned_val = 0; + dst_gpu[index] = unsigned_val * sign; + } +} + +extern "C" void mult_inverse_array_gpu(const float *src_gpu, float *dst_gpu, int size, float eps, float divider, float clip, float abs_add) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + mult_inverse_array_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (src_gpu, dst_gpu, size, eps, divider, clip, abs_add); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void P_constrastive_f_det_kernel(int *labels, unsigned int feature_size, float temperature, contrastive_params *contrast_p, const int contrast_p_size) +{ + const int il = blockIdx.x*blockDim.x + threadIdx.x; + + if (il < contrast_p_size) { + const float sim = contrast_p[il].sim; + const size_t i = contrast_p[il].i; + const size_t j = contrast_p[il].j; + + const float numerator = expf(sim / temperature); + + float denominator = 0; + int k; + for (k = 0; k < contrast_p_size; ++k) { + contrastive_params cp = contrast_p[k]; + //if (k != i && labels[k] != labels[i]) { + //if (k != i) { + if (cp.i != i && cp.j == j) { + //const float sim_den = cp.sim; + ////const float sim_den = find_sim(k, l, contrast_p, contrast_p_size); // cosine_similarity(z[k], z[l], feature_size); + //denominator += expf(sim_den / temperature); + denominator += cp.exp_sim; + } + } + + float result = 0.9999; + if (denominator != 0) result = numerator / denominator; + if (result > 1) result = 0.9999; + + contrast_p[il].P = result; + } +} + + +extern "C" void P_constrastive_f_det_gpu(int *labels, unsigned int feature_size, float temperature, contrastive_params *contrast_p, const int contrast_p_size) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(contrast_p_size, block_size); + P_constrastive_f_det_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (labels, feature_size, temperature, contrast_p, contrast_p_size); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + + + +__global__ void coord_conv_kernel(float *dst, int w, int h, int chan, int batch, int type) +{ + int i = blockIdx.x*blockDim.x + threadIdx.x; + + const int x = i % w; + i = i / w; + const int y = i % h; + i = i / h; + const int c = i % chan; + //i = i / chan; + //const int b = i % batch; + + if (type == 0) { + if (c == 0) { + const float x_val = (2.0f * x) / w - 1.0f; // [-1; 1) + dst[i] = x_val; // x - coord + } + else if (c == 1) { + const float y_val = (2.0f * y) / h - 1.0f; // [-1; 1) + dst[i] = y_val; // y - coord + } + else if (c == 2) { + const float x_val = (2.0f * x) / w - 1.0f; // [-1; 1) + const float y_val = (2.0f * y) / h - 1.0f; // [-1; 1) + const float rad_val = sqrtf(x_val*x_val + y_val*y_val); // [0; 1.414) + dst[i] = rad_val; // rad - coord + } + } + else if (type == 1) { + if (c >= 0 && c <= 2) { + dst[i] = 0; + } + } +} + +extern "C" void coord_conv_gpu(float *dst, int size, int w, int h, int chan, int b, int type) +{ + const int block_size = BLOCK; + const int num_blocks = get_number_of_blocks(size, block_size); + coord_conv_kernel << <num_blocks, block_size, 0, get_cuda_stream() >> > (dst, w, h, chan, b, type); + + CHECK_CUDA(cudaPeekAtLastError()); +} + + +__global__ void forward_implicit_kernel(int size, int batch, int nweights, float *weight_gpu, float *output_gpu) +{ + const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + + output_gpu[id] = weight_gpu[id % nweights]; +} + +extern "C" void forward_implicit_gpu(int batch, int nweights, float *weight_gpu, float *output_gpu) +{ + int size = batch * nweights; + forward_implicit_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, batch, nweights, weight_gpu, output_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} + + + +__global__ void backward_implicit_kernel(int size, int batch, int nweights, float *weight_updates_gpu, float *delta_gpu) +{ + const int id = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; + if (id >= size) return; + + for (int i = 0; i < batch; ++i) { + weight_updates_gpu[id] += delta_gpu[id + i * nweights]; + } +} + +extern "C" void backward_implicit_gpu(int batch, int nweights, float *weight_updates_gpu, float *delta_gpu) +{ + int size = nweights; + backward_implicit_kernel << <cuda_gridsize(size), BLOCK, 0, get_cuda_stream() >> > (size, batch, nweights, weight_updates_gpu, delta_gpu); + CHECK_CUDA(cudaPeekAtLastError()); +} -- Gitblit v1.8.0