import torch import torch.nn as nn from torch.autograd import Variable import math import torch.nn.functional as F def ycbcr_to_rgb(input): # input is mini-batch N x 3 x H x W of an YCbCr image output = Variable(input.data.new(*input.size())) output[:, 0, :, :] = input[:, 0, :, :] + (input[:, 2, :, :] - 0.502) * 1.4 output[:, 1, :, :] = input[:, 0, :, :] - (input[:, 1, :, :] - 0.502) * 0.343 - (input[:, 2, :, :] - 0.502) * 0.711 output[:, 2, :, :] = input[:, 0, :, :] + (input[:, 1, :, :] - 0.502) * 1.765 # output[output <= 0] = 0. # output[output > 1] = 1. return output # CNN Model (2 conv layer) class Simple_CNN(nn.Module): def __init__(self): super(Simple_CNN, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(3, 64, kernel_size=3, padding=0), nn.BatchNorm2d(64), nn.ReLU(), nn.MaxPool2d(2)) self.layer2 = nn.Sequential( nn.Conv2d(64, 128, kernel_size=3, padding=0), nn.BatchNorm2d(128), nn.ReLU(), nn.MaxPool2d(2)) self.layer3 = nn.Sequential( nn.Conv2d(128, 256, kernel_size=3, padding=0), nn.BatchNorm2d(256), nn.ReLU(), nn.MaxPool2d(2)) self.layer4 = nn.Sequential( nn.Conv2d(256, 512, kernel_size=3, padding=0), nn.BatchNorm2d(512), nn.ReLU(), nn.MaxPool2d(2)) self.fc = nn.Linear(17*17*512, 3) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = out.view(out.size(0), -1) out = self.fc(out) return out class Hopenet(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. def __init__(self, block, layers, num_bins, iter_ref): self.inplanes = 64 super(Hopenet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) self.softmax = nn.Softmax() self.fc_finetune = nn.Linear(512 * block.expansion + 3, 3) self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() self.iter_ref = iter_ref for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) pre_yaw = self.fc_yaw(x) pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) yaw = self.softmax(pre_yaw) yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) pitch = self.softmax(pre_pitch) pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) roll = self.softmax(pre_roll) roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) yaw = yaw.view(yaw.size(0), 1) pitch = pitch.view(pitch.size(0), 1) roll = roll.view(roll.size(0), 1) angles = [] preangles = torch.cat([yaw, pitch, roll], 1) angles.append(preangles) # angles predicts the residual for idx in xrange(self.iter_ref): angles.append(self.fc_finetune(torch.cat((angles[idx], x), 1))) return pre_yaw, pre_pitch, pre_roll, angles class ResNet(nn.Module): def __init__(self, block, layers, num_classes=1000): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc_angles = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.fc_angles(x) return x class AlexNet(nn.Module): def __init__(self, num_bins): super(AlexNet, self).__init__() self.features = nn.Sequential( nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(64, 192, kernel_size=5, padding=2), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), nn.Conv2d(192, 384, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(384, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(256, 256, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.MaxPool2d(kernel_size=3, stride=2), ) self.classifier = nn.Sequential( nn.Dropout(), nn.Linear(256 * 6 * 6, 4096), nn.ReLU(inplace=True), nn.Dropout(), nn.Linear(4096, 4096), nn.ReLU(inplace=True), ) self.fc_yaw = nn.Linear(4096, num_bins) self.fc_pitch = nn.Linear(4096, num_bins) self.fc_roll = nn.Linear(4096, num_bins) def forward(self, x): x = self.features(x) x = x.view(x.size(0), 256 * 6 * 6) x = self.classifier(x) yaw = self.fc_yaw(x) pitch = self.fc_pitch(x) roll = self.fc_roll(x) return yaw, pitch, roll class Hopenet_SR(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. def __init__(self, block, layers, num_bins, upscale_factor): self.inplanes = 64 super(Hopenet, self).__init__() # Super resolution sub-network self.sr_relu = nn.ReLU() self.sr_conv1 = nn.Conv2d(1, 64, (5, 5), (1, 1), (2, 2)) self.sr_conv2 = nn.Conv2d(64, 64, (3, 3), (1, 1), (1, 1)) self.sr_conv3 = nn.Conv2d(64, 32, (3, 3), (1, 1), (1, 1)) self.sr_conv4 = nn.Conv2d(32, upscale_factor ** 2, (3, 3), (1, 1), (1, 1)) self.sr_pixel_shuffle = nn.PixelShuffle(upscale_factor) # Pose estimation sub-network self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) self.softmax = nn.Softmax() self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() self.upscale_factor = upscale_factor for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): # Super-resolution sub-network y_channel = x[:,0,:,:] sr_y = self.sr_relu(self.sr_conv1(y_channel)) sr_y = self.sr_relu(self.sr_conv2(sr_y)) sr_y = self.sr_relu(self.sr_conv3(sr_y)) sr_y = self.sr_pixel_shuffle(self.sr_conv4(sr_y)) x[:,0,:,:] = sr_y x_rgb = ycbcr_to_rgb(x) out_img_cb = cb.resize(out_img_y.size, Image.BICUBIC) out_img_cr = cr.resize(out_img_y.size, Image.BICUBIC) out_img = Image.merge('YCbCr', [out_img_y, out_img_cb, out_img_cr]).convert('RGB') # Pose estimation sub-network x = self.conv1(sr_output) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) pre_yaw = self.fc_yaw(x) pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) yaw = self.softmax(pre_yaw) yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) pitch = self.softmax(pre_pitch) pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) roll = self.softmax(pre_roll) roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) yaw = yaw.view(yaw.size(0), 1) pitch = pitch.view(pitch.size(0), 1) roll = roll.view(roll.size(0), 1) angles = [] preangles = torch.cat([yaw, pitch, roll], 1) angles.append(preangles) return pre_yaw, pre_pitch, pre_roll, angles, sr_output class Hopenet_new(nn.Module): # This is just Hopenet with 3 output layers for yaw, pitch and roll. def __init__(self, block, layers, num_bins): self.inplanes = 64 super(Hopenet_new, self).__init__() self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2) self.layer3 = self._make_layer(block, 256, layers[2], stride=2) self.layer4 = self._make_layer(block, 512, layers[3], stride=2) self.avgpool = nn.AvgPool2d(7) self.fc_yaw = nn.Linear(512 * block.expansion, num_bins) self.fc_pitch = nn.Linear(512 * block.expansion, num_bins) self.fc_roll = nn.Linear(512 * block.expansion, num_bins) self.softmax = nn.Softmax() self.fc_finetune_new = nn.Linear(512 * block.expansion + 256 * block.expansion + 3, 3) self.conv1x1 = nn.Conv2d(1024, 64, kernel_size = 1, stride = 1, bias=False) self.maxpool_interm = nn.MaxPool2d(kernel_size=5, stride=3, padding=1) self.idx_tensor = Variable(torch.FloatTensor(range(66))).cuda() for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x_interm = self.conv1x1(x) x_interm = self.relu(x_interm) x_interm = self.maxpool_interm(x_interm) x_interm = x_interm.view(x_interm.size(0), -1) x = self.layer4(x) x = self.avgpool(x) x = x.view(x.size(0), -1) pre_yaw = self.fc_yaw(x) pre_pitch = self.fc_pitch(x) pre_roll = self.fc_roll(x) yaw = self.softmax(pre_yaw) yaw = Variable(torch.sum(yaw.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 pitch = self.softmax(pre_pitch) pitch = Variable(torch.sum(pitch.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 roll = self.softmax(pre_roll) roll = Variable(torch.sum(roll.data * self.idx_tensor.data, 1), requires_grad=True) * 3 - 99 yaw = yaw.view(yaw.size(0), 1) pitch = pitch.view(pitch.size(0), 1) roll = roll.view(roll.size(0), 1) preangles = torch.cat([yaw, pitch, roll], 1) # angles predicts the residual residuals = self.fc_finetune_new(torch.cat((preangles, x_interm, x), 1)) final_angles = preangles + residuals return pre_yaw, pre_pitch, pre_roll, preangles, final_angles