import numpy as np import torch from torch.utils.serialization import load_lua import os import scipy.io as sio import cv2 import math from math import cos, sin def softmax_temperature(tensor, temperature): result = torch.exp(tensor / temperature) result = torch.div(result, torch.sum(result, 1).unsqueeze(1).expand_as(result)) return result def get_pose_params_from_mat(mat_path): # This functions gets the pose parameters from the .mat # Annotations that come with the Pose_300W_LP dataset. mat = sio.loadmat(mat_path) # [pitch yaw roll tdx tdy tdz scale_factor] pre_pose_params = mat['Pose_Para'][0] # Get [pitch, yaw, roll, tdx, tdy] pose_params = pre_pose_params[:5] return pose_params def get_ypr_from_mat(mat_path): # Get yaw, pitch, roll from .mat annotation. # They are in radians mat = sio.loadmat(mat_path) # [pitch yaw roll tdx tdy tdz scale_factor] pre_pose_params = mat['Pose_Para'][0] # Get [pitch, yaw, roll] pose_params = pre_pose_params[:3] return pose_params def get_pt2d_from_mat(mat_path): # Get 2D landmarks mat = sio.loadmat(mat_path) pt2d = mat['pt2d'] return pt2d def mse_loss(input, target): return torch.sum(torch.abs(input.data - target.data) ** 2) def plot_pose_cube(img, yaw, pitch, roll, tdx=None, tdy=None, size=150.): # Input is a cv2 image # pose_params: (pitch, yaw, roll, tdx, tdy) # Where (tdx, tdy) is the translation of the face. # For pose we have [pitch yaw roll tdx tdy tdz scale_factor] p = pitch * np.pi / 180 y = -(yaw * np.pi / 180) r = roll * np.pi / 180 if tdx != None and tdy != None: face_x = tdx - 0.50 * size face_y = tdy - 0.50 * size else: height, width = img.shape[:2] face_x = width / 2 - 0.5 * size face_y = height / 2 - 0.5 * size x1 = size * (cos(y) * cos(r)) + face_x y1 = size * (cos(p) * sin(r) + cos(r) * sin(p) * sin(y)) + face_y x2 = size * (-cos(y) * sin(r)) + face_x y2 = size * (cos(p) * cos(r) - sin(p) * sin(y) * sin(r)) + face_y x3 = size * (sin(y)) + face_x y3 = size * (-cos(y) * sin(p)) + face_y # Draw base in red cv2.line(img, (int(face_x), int(face_y)), (int(x1),int(y1)),(0,0,255),3) cv2.line(img, (int(face_x), int(face_y)), (int(x2),int(y2)),(0,0,255),3) cv2.line(img, (int(x2), int(y2)), (int(x2+x1-face_x),int(y2+y1-face_y)),(0,0,255),3) cv2.line(img, (int(x1), int(y1)), (int(x1+x2-face_x),int(y1+y2-face_y)),(0,0,255),3) # Draw pillars in blue cv2.line(img, (int(face_x), int(face_y)), (int(x3),int(y3)),(255,0,0),2) cv2.line(img, (int(x1), int(y1)), (int(x1+x3-face_x),int(y1+y3-face_y)),(255,0,0),2) cv2.line(img, (int(x2), int(y2)), (int(x2+x3-face_x),int(y2+y3-face_y)),(255,0,0),2) cv2.line(img, (int(x2+x1-face_x),int(y2+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(255,0,0),2) # Draw top in green cv2.line(img, (int(x3+x1-face_x),int(y3+y1-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) cv2.line(img, (int(x2+x3-face_x),int(y2+y3-face_y)), (int(x3+x1+x2-2*face_x),int(y3+y2+y1-2*face_y)),(0,255,0),2) cv2.line(img, (int(x3), int(y3)), (int(x3+x1-face_x),int(y3+y1-face_y)),(0,255,0),2) cv2.line(img, (int(x3), int(y3)), (int(x3+x2-face_x),int(y3+y2-face_y)),(0,255,0),2) return img def draw_axis(img, yaw, pitch, roll, tdx=None, tdy=None, size = 100): pitch = pitch * np.pi / 180 yaw = -(yaw * np.pi / 180) roll = roll * np.pi / 180 if tdx != None and tdy != None: tdx = tdx tdy = tdy else: height, width = img.shape[:2] tdx = width / 2 tdy = height / 2 # X-Axis pointing to right. drawn in red x1 = size * (cos(yaw) * cos(roll)) + tdx y1 = size * (cos(pitch) * sin(roll) + cos(roll) * sin(pitch) * sin(yaw)) + tdy # Y-Axis | drawn in green # v x2 = size * (-cos(yaw) * sin(roll)) + tdx y2 = size * (cos(pitch) * cos(roll) - sin(pitch) * sin(yaw) * sin(roll)) + tdy # Z-Axis (out of the screen) drawn in blue x3 = size * (sin(yaw)) + tdx y3 = size * (-cos(yaw) * sin(pitch)) + tdy cv2.line(img, (int(tdx), int(tdy)), (int(x1),int(y1)),(0,0,255),3) cv2.line(img, (int(tdx), int(tdy)), (int(x2),int(y2)),(0,255,0),3) cv2.line(img, (int(tdx), int(tdy)), (int(x3),int(y3)),(255,0,0),2) return img