import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms import torchvision import torch.backends.cudnn as cudnn import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt import sys import os import argparse import datasets import hopenet import torch.utils.model_zoo as model_zoo if __name__ == '__main__': batch_size = 1 print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224), transforms.ToTensor()]) pose_dataset = datasets.Pose_300W_LP('data/300W_LP', 'data/300W_LP/filename_list_filtered.txt', transformations) train_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, shuffle=True, num_workers=2) print 'Ready to get mean.' for i, (images, labels, name) in enumerate(train_loader): print images