import numpy as np import torch import cv2 from torch.utils.data.dataset import Dataset import os from PIL import Image import utils def stack_grayscale_tensor(tensor): tensor = torch.cat([tensor, tensor, tensor], 0) return tensor class Pose_300W_LP(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert('RGB') pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) label = torch.FloatTensor(pose) if self.transform is not None: img = self.transform(img) return img, label, self.X_train[index] def __len__(self): # 122,450 return self.length class AFLW2000(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert('RGB') pose = utils.get_ypr_from_mat(os.path.join(self.data_dir, self.y_train[index] + self.annot_ext)) label = torch.FloatTensor(pose) if self.transform is not None: img = self.transform(img) return img, label, self.X_train[index] def __len__(self): # 2,000 return self.length class Pose_300W_LP_binned(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) k = 0.15 x_min -= k * abs(x_max - x_min) y_min -= 4 * k * abs(y_max - y_min) x_max += k * abs(x_max - x_min) y_max += 0.4 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) if self.transform is not None: img = self.transform(img) return img, labels, self.X_train[index] def __len__(self): # 122,450 return self.length class AFLW2000_binned(Dataset): def __init__(self, data_dir, filename_path, transform, img_ext='.jpg', annot_ext='.mat', image_mode='RGB'): self.data_dir = data_dir self.transform = transform self.img_ext = img_ext self.annot_ext = annot_ext filename_list = get_list_from_filenames(filename_path) self.X_train = filename_list self.y_train = filename_list self.image_mode = image_mode self.length = len(filename_list) def __getitem__(self, index): img = Image.open(os.path.join(self.data_dir, self.X_train[index] + self.img_ext)) img = img.convert(self.image_mode) mat_path = os.path.join(self.data_dir, self.y_train[index] + self.annot_ext) # Crop the face pt2d = utils.get_pt2d_from_mat(mat_path) x_min = min(pt2d[0,:]) y_min = min(pt2d[1,:]) x_max = max(pt2d[0,:]) y_max = max(pt2d[1,:]) k = 0.15 x_min -= k * abs(x_max - x_min) y_min -= 4 * k * abs(y_max - y_min) x_max += k * abs(x_max - x_min) y_max += 0.4 * k * abs(y_max - y_min) img = img.crop((int(x_min), int(y_min), int(x_max), int(y_max))) # We get the pose in radians pose = utils.get_ypr_from_mat(mat_path) # And convert to degrees. pitch = pose[0] * 180 / np.pi yaw = pose[1] * 180 / np.pi roll = pose[2] * 180 / np.pi # Bin values bins = np.array(range(-99, 102, 3)) labels = torch.LongTensor(np.digitize([yaw, pitch, roll], bins) - 1) if self.transform is not None: img = self.transform(img) return img, labels, self.X_train[index] def __len__(self): # 2,000 return self.length def get_list_from_filenames(file_path): # input: relative path to .txt file with file names # output: list of relative path names with open(file_path) as f: lines = f.read().splitlines() return lines