import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms import torch.backends.cudnn as cudnn import torchvision import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt import sys import os import argparse import datasets import hopenet import utils def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) parser.add_argument('--snapshot', dest='snapshot', help='Name of model snapshot.', default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() cudnn.enabled = True batch_size = 1 gpu = args.gpu_id snapshot_path = os.path.join('output/snapshots', args.snapshot + '.pkl') # ResNet50 with 3 outputs. model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot.' # Load snapshot saved_state_dict = torch.load(snapshot_path) model.load_state_dict(saved_state_dict) print 'Loading data.' transformations = transforms.Compose([transforms.Scale(224), transforms.RandomCrop(224), transforms.ToTensor()]) pose_dataset = datasets.AFLW2000_binned(args.data_dir, args.filename_list, transformations) test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=batch_size, num_workers=2) model.cuda(gpu) print 'Ready to test network.' # Test the Model model.eval() # Change model to 'eval' mode (BN uses moving mean/var). total = 0 n_margins = 20 yaw_correct = np.zeros(n_margins) pitch_correct = np.zeros(n_margins) roll_correct = np.zeros(n_margins) idx_tensor = [idx for idx in xrange(66)] idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) yaw_error = .0 pitch_error = .0 roll_error = .0 for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) total += labels.size(0) label_yaw = labels[:,0] label_pitch = labels[:,1] label_roll = labels[:,2] yaw, pitch, roll = model(images) # _, yaw_predicted = torch.max(yaw.data, 1) # _, pitch_predicted = torch.max(pitch.data, 1) # _, roll_predicted = torch.max(roll.data, 1) yaw_predicted = F.softmax(yaw) pitch_predicted = F.softmax(pitch) roll_predicted = F.softmax(roll) yaw_predicted = torch.sum(yaw_predicted.data[0] * idx_tensor) pitch_predicted = torch.sum(pitch_predicted.data[0] * idx_tensor) roll_predicted = torch.sum(roll_predicted.data[0] * idx_tensor) yaw_error += abs(yaw_predicted - label_yaw[0]) * 3 pitch_error += abs(pitch_predicted - label_pitch[0]) * 3 roll_error += abs(roll_predicted - label_roll[0]) * 3 # print yaw_predicted * 3, label_yaw[0] * 3, abs(yaw_predicted - label_yaw[0]) * 3 # for er in xrange(0,n_margins): # yaw_correct[er] += (label_yaw[0] in range(yaw_predicted[0,0] - er, yaw_predicted[0,0] + er + 1)) # pitch_correct[er] += (label_pitch[0] in range(pitch_predicted[0,0] - er, pitch_predicted[0,0] + er + 1)) # roll_correct[er] += (label_roll[0] in range(roll_predicted[0,0] - er, roll_predicted[0,0] + er + 1)) # print label_yaw[0], yaw_predicted[0,0] # 4 -> 15 print('Test error in degrees of the model on the ' + str(total) + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, pitch_error / total, roll_error / total)) # for idx in xrange(len(yaw_correct)): # print yaw_correct[idx] / total, pitch_correct[idx] / total, roll_correct[idx] / total