import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision import transforms import torch.backends.cudnn as cudnn import torchvision import torch.nn.functional as F import cv2 import matplotlib.pyplot as plt import sys import os import argparse import datasets import hopenet import utils import glob def parse_args(): """Parse input arguments.""" parser = argparse.ArgumentParser(description='Head pose estimation using the Hopenet network.') parser.add_argument('--gpu', dest='gpu_id', help='GPU device id to use [0]', default=0, type=int) parser.add_argument('--data_dir', dest='data_dir', help='Directory path for data.', default='', type=str) parser.add_argument('--filename_list', dest='filename_list', help='Path to text file containing relative paths for every example.', default='', type=str) parser.add_argument('--snapshot_folder', dest='snapshot_folder', help='Name of model snapshot folder.', default='', type=str) parser.add_argument('--batch_size', dest='batch_size', help='Batch size.', default=1, type=int) parser.add_argument('--save_viz', dest='save_viz', help='Save images with pose cube.', default=False, type=bool) args = parser.parse_args() return args if __name__ == '__main__': args = parse_args() cudnn.enabled = True gpu = args.gpu_id # ResNet101 with 3 outputs. # model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 23, 3], 66) # ResNet50 model = hopenet.Hopenet(torchvision.models.resnet.Bottleneck, [3, 4, 6, 3], 66) # ResNet18 # model = hopenet.Hopenet(torchvision.models.resnet.BasicBlock, [2, 2, 2, 2], 66) print 'Loading snapshot list.' # Load snapshot snapshot_list = sorted(glob.glob(os.path.join(args.snapshot_folder, '*.pkl'))) print 'Loading data.' # transformations = transforms.Compose([transforms.Scale(224), # transforms.RandomCrop(224), transforms.ToTensor()]) transformations = transforms.Compose([transforms.Scale(224), transforms.RandomCrop(224), transforms.ToTensor(), transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])]) pose_dataset = datasets.AFLW(args.data_dir, args.filename_list, transformations) test_loader = torch.utils.data.DataLoader(dataset=pose_dataset, batch_size=args.batch_size, num_workers=2) model.cuda(gpu) print 'Ready to test network.' output_file_name = args.snapshot_folder.split('/')[-1] + '_AFLW_preangles.txt' txt_output = open(os.join('output/batch_snapshots', output_file_name), 'w') for snapshot_path in snapshot_list: snapshot_name = snapshot_path.split('/')[-1].split('.')[0] print 'Loading snapshot ' + snapshot_name saved_state_dict = torch.load(snapshot_path) model.load_state_dict(saved_state_dict) # Test the Model model.eval() # Change model to 'eval' mode (BN uses moving mean/var). total = 0 n_margins = 20 yaw_correct = np.zeros(n_margins) pitch_correct = np.zeros(n_margins) roll_correct = np.zeros(n_margins) idx_tensor = [idx for idx in xrange(66)] idx_tensor = torch.FloatTensor(idx_tensor).cuda(gpu) yaw_error = .0 pitch_error = .0 roll_error = .0 l1loss = torch.nn.L1Loss(size_average=False) for i, (images, labels, name) in enumerate(test_loader): images = Variable(images).cuda(gpu) total += labels.size(0) label_yaw = labels[:,0].float() label_pitch = labels[:,1].float() label_roll = labels[:,2].float() yaw, pitch, roll, angles = model(images) # Binned predictions _, yaw_bpred = torch.max(yaw.data, 1) _, pitch_bpred = torch.max(pitch.data, 1) _, roll_bpred = torch.max(roll.data, 1) # Continuous predictions yaw_predicted = utils.softmax_temperature(yaw.data, 1) pitch_predicted = utils.softmax_temperature(pitch.data, 1) roll_predicted = utils.softmax_temperature(roll.data, 1) yaw_predicted = torch.sum(yaw_predicted * idx_tensor, 1).cpu() pitch_predicted = torch.sum(pitch_predicted * idx_tensor, 1).cpu() roll_predicted = torch.sum(roll_predicted * idx_tensor, 1).cpu() # Mean absolute error yaw_error += torch.sum(torch.abs(yaw_predicted - label_yaw) * 3) pitch_error += torch.sum(torch.abs(pitch_predicted - label_pitch) * 3) roll_error += torch.sum(torch.abs(roll_predicted - label_roll) * 3) if args.save_viz: name = name[0] cv2_img = cv2.imread(os.path.join(args.data_dir, name + '.jpg')) utils.plot_pose_cube(cv2_img, yaw_predicted[0] * 3 - 99, pitch_predicted[0] * 3 - 99, roll_predicted[0] * 3 - 99) cv2.imwrite(os.path.join('output/images', name + '.jpg'), cv2_img) print('Test error in degrees of the model on the ' + str(total) + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f' % (yaw_error / total, pitch_error / total, roll_error / total)) txt_output.write('Test error in degrees of model ' + snapshot_name + ' on the ' + str(total) + ' test images. Yaw: %.4f, Pitch: %.4f, Roll: %.4f \n' % (yaw_error / total, pitch_error / total, roll_error / total)) txt_output.close()