# encoding: utf-8 """ @author: liaoxingyu @contact: sherlockliao01@gmail.com """ from layers import * from modeling.losses import * from utils.weight_init import weights_init_kaiming, weights_init_classifier from .build import REID_HEADS_REGISTRY @REID_HEADS_REGISTRY.register() class BNneckHead(nn.Module): def __init__(self, cfg, in_feat, num_classes, pool_layer): super().__init__() self.neck_feat = cfg.MODEL.HEADS.NECK_FEAT self.pool_layer = pool_layer self.bnneck = get_norm(cfg.MODEL.HEADS.NORM, in_feat, cfg.MODEL.HEADS.NORM_SPLIT, bias_freeze=True) self.bnneck.apply(weights_init_kaiming) # identity classification layer cls_type = cfg.MODEL.HEADS.CLS_LAYER if cls_type == 'linear': self.classifier = nn.Linear(in_feat, num_classes, bias=False) elif cls_type == 'arcface': self.classifier = Arcface(cfg, in_feat, num_classes) elif cls_type == 'circle': self.classifier = Circle(cfg, in_feat, num_classes) else: raise KeyError(f"{cls_type} is invalid, please choose from " f"'linear', 'arcface' and 'circle'.") self.classifier.apply(weights_init_classifier) def forward(self, features, targets=None): """ See :class:`ReIDHeads.forward`. """ global_feat = self.pool_layer(features) bn_feat = self.bnneck(global_feat) bn_feat = bn_feat[..., 0, 0] # Evaluation if not self.training: return bn_feat # Training try: cls_outputs = self.classifier(bn_feat) pred_class_logits = cls_outputs.detach() except TypeError: cls_outputs = self.classifier(bn_feat, targets) pred_class_logits = F.linear(F.normalize(bn_feat.detach()), F.normalize(self.classifier.weight.detach())) # Log prediction accuracy CrossEntropyLoss.log_accuracy(pred_class_logits, targets) if self.neck_feat == "before": feat = global_feat[..., 0, 0] elif self.neck_feat == "after": feat = bn_feat else: raise KeyError("MODEL.HEADS.NECK_FEAT value is invalid, must choose from ('after' & 'before')") return cls_outputs, feat