#include "batchnorm_layer.h" #include "blas.h" #include layer make_batchnorm_layer(int batch, int w, int h, int c) { fprintf(stderr, "Batch Normalization Layer: %d x %d x %d image\n", w,h,c); layer layer = {0}; layer.type = BATCHNORM; layer.batch = batch; layer.h = layer.out_h = h; layer.w = layer.out_w = w; layer.c = layer.out_c = c; layer.output = calloc(h * w * c * batch, sizeof(float)); layer.delta = calloc(h * w * c * batch, sizeof(float)); layer.inputs = w*h*c; layer.outputs = layer.inputs; layer.scales = calloc(c, sizeof(float)); layer.scale_updates = calloc(c, sizeof(float)); int i; for(i = 0; i < c; ++i){ layer.scales[i] = 1; } layer.mean = calloc(c, sizeof(float)); layer.variance = calloc(c, sizeof(float)); layer.rolling_mean = calloc(c, sizeof(float)); layer.rolling_variance = calloc(c, sizeof(float)); layer.forward = forward_batchnorm_layer; layer.backward = backward_batchnorm_layer; #ifdef GPU layer.forward_gpu = forward_batchnorm_layer_gpu; layer.backward_gpu = backward_batchnorm_layer_gpu; layer.output_gpu = cuda_make_array(layer.output, h * w * c * batch); layer.delta_gpu = cuda_make_array(layer.delta, h * w * c * batch); layer.scales_gpu = cuda_make_array(layer.scales, c); layer.scale_updates_gpu = cuda_make_array(layer.scale_updates, c); layer.mean_gpu = cuda_make_array(layer.mean, c); layer.variance_gpu = cuda_make_array(layer.variance, c); layer.rolling_mean_gpu = cuda_make_array(layer.mean, c); layer.rolling_variance_gpu = cuda_make_array(layer.variance, c); layer.mean_delta_gpu = cuda_make_array(layer.mean, c); layer.variance_delta_gpu = cuda_make_array(layer.variance, c); layer.x_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); layer.x_norm_gpu = cuda_make_array(layer.output, layer.batch*layer.outputs); #ifdef CUDNN cudnnCreateTensorDescriptor(&layer.normTensorDesc); cudnnCreateTensorDescriptor(&layer.normDstTensorDesc); cudnnSetTensor4dDescriptor(layer.normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, layer.batch, layer.out_c, layer.out_h, layer.out_w); cudnnSetTensor4dDescriptor(layer.normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, layer.out_c, 1, 1); #endif #endif return layer; } void backward_scale_cpu(float *x_norm, float *delta, int batch, int n, int size, float *scale_updates) { int i,b,f; for(f = 0; f < n; ++f){ float sum = 0; for(b = 0; b < batch; ++b){ for(i = 0; i < size; ++i){ int index = i + size*(f + n*b); sum += delta[index] * x_norm[index]; } } scale_updates[f] += sum; } } void mean_delta_cpu(float *delta, float *variance, int batch, int filters, int spatial, float *mean_delta) { int i,j,k; for(i = 0; i < filters; ++i){ mean_delta[i] = 0; for (j = 0; j < batch; ++j) { for (k = 0; k < spatial; ++k) { int index = j*filters*spatial + i*spatial + k; mean_delta[i] += delta[index]; } } mean_delta[i] *= (-1./sqrt(variance[i] + .00001f)); } } void variance_delta_cpu(float *x, float *delta, float *mean, float *variance, int batch, int filters, int spatial, float *variance_delta) { int i,j,k; for(i = 0; i < filters; ++i){ variance_delta[i] = 0; for(j = 0; j < batch; ++j){ for(k = 0; k < spatial; ++k){ int index = j*filters*spatial + i*spatial + k; variance_delta[i] += delta[index]*(x[index] - mean[i]); } } variance_delta[i] *= -.5 * pow(variance[i] + .00001f, (float)(-3./2.)); } } void normalize_delta_cpu(float *x, float *mean, float *variance, float *mean_delta, float *variance_delta, int batch, int filters, int spatial, float *delta) { int f, j, k; for(j = 0; j < batch; ++j){ for(f = 0; f < filters; ++f){ for(k = 0; k < spatial; ++k){ int index = j*filters*spatial + f*spatial + k; delta[index] = delta[index] * 1./(sqrt(variance[f]) + .00001f) + variance_delta[f] * 2. * (x[index] - mean[f]) / (spatial * batch) + mean_delta[f]/(spatial*batch); } } } } void resize_batchnorm_layer(layer *layer, int w, int h) { fprintf(stderr, "Not implemented\n"); } void forward_batchnorm_layer(layer l, network_state state) { if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); if(l.type == CONNECTED){ l.out_c = l.outputs; l.out_h = l.out_w = 1; } if(state.train){ mean_cpu(l.output, l.batch, l.out_c, l.out_h*l.out_w, l.mean); variance_cpu(l.output, l.mean, l.batch, l.out_c, l.out_h*l.out_w, l.variance); scal_cpu(l.out_c, .9, l.rolling_mean, 1); axpy_cpu(l.out_c, .1, l.mean, 1, l.rolling_mean, 1); scal_cpu(l.out_c, .9, l.rolling_variance, 1); axpy_cpu(l.out_c, .1, l.variance, 1, l.rolling_variance, 1); copy_cpu(l.outputs*l.batch, l.output, 1, l.x, 1); normalize_cpu(l.output, l.mean, l.variance, l.batch, l.out_c, l.out_h*l.out_w); copy_cpu(l.outputs*l.batch, l.output, 1, l.x_norm, 1); } else { normalize_cpu(l.output, l.rolling_mean, l.rolling_variance, l.batch, l.out_c, l.out_h*l.out_w); } scale_bias(l.output, l.scales, l.batch, l.out_c, l.out_h*l.out_w); } void backward_batchnorm_layer(const layer l, network_state state) { backward_scale_cpu(l.x_norm, l.delta, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates); scale_bias(l.delta, l.scales, l.batch, l.out_c, l.out_h*l.out_w); mean_delta_cpu(l.delta, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta); variance_delta_cpu(l.x, l.delta, l.mean, l.variance, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta); normalize_delta_cpu(l.x, l.mean, l.variance, l.mean_delta, l.variance_delta, l.batch, l.out_c, l.out_w*l.out_h, l.delta); if(l.type == BATCHNORM) copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1); } #ifdef GPU void pull_batchnorm_layer(layer l) { cuda_pull_array(l.scales_gpu, l.scales, l.c); cuda_pull_array(l.rolling_mean_gpu, l.rolling_mean, l.c); cuda_pull_array(l.rolling_variance_gpu, l.rolling_variance, l.c); } void push_batchnorm_layer(layer l) { cuda_push_array(l.scales_gpu, l.scales, l.c); cuda_push_array(l.rolling_mean_gpu, l.rolling_mean, l.c); cuda_push_array(l.rolling_variance_gpu, l.rolling_variance, l.c); } void forward_batchnorm_layer_gpu(layer l, network_state state) { if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); if (state.train) { #ifdef CUDNN float one = 1; float zero = 0; cudnnBatchNormalizationForwardTraining(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, l.normDstTensorDesc, l.x_gpu, // input l.normDstTensorDesc, l.output_gpu, // output l.normTensorDesc, l.scales_gpu, l.biases_gpu, .01, l.rolling_mean_gpu, // output (should be FP32) l.rolling_variance_gpu, // output (should be FP32) .00001, l.mean_gpu, // output (should be FP32) l.variance_gpu); // output (should be FP32) #else fast_mean_gpu(l.output_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.mean_gpu); fast_variance_gpu(l.output_gpu, l.mean_gpu, l.batch, l.out_c, l.out_h*l.out_w, l.variance_gpu); scal_ongpu(l.out_c, .99, l.rolling_mean_gpu, 1); axpy_ongpu(l.out_c, .01, l.mean_gpu, 1, l.rolling_mean_gpu, 1); scal_ongpu(l.out_c, .99, l.rolling_variance_gpu, 1); axpy_ongpu(l.out_c, .01, l.variance_gpu, 1, l.rolling_variance_gpu, 1); copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_gpu, 1); normalize_gpu(l.output_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.x_norm_gpu, 1); scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); #endif } else { normalize_gpu(l.output_gpu, l.rolling_mean_gpu, l.rolling_variance_gpu, l.batch, l.out_c, l.out_h*l.out_w); scale_bias_gpu(l.output_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.out_c, l.out_w*l.out_h); } } void backward_batchnorm_layer_gpu(layer l, network_state state) { if (!state.train) { l.mean_gpu = l.rolling_mean_gpu; l.variance_gpu = l.rolling_variance_gpu; } #ifdef CUDNN float one = 1; float zero = 0; cudnnBatchNormalizationBackward(cudnn_handle(), CUDNN_BATCHNORM_SPATIAL, &one, &zero, &one, &one, l.normDstTensorDesc, l.x_gpu, // input l.normDstTensorDesc, l.delta_gpu, // input l.normDstTensorDesc, l.x_norm_gpu, // output l.normTensorDesc, l.scales_gpu, // output (should be FP32) l.scale_updates_gpu, // output (should be FP32) l.bias_updates_gpu, // output (should be FP32) .00001, l.mean_gpu, // input (should be FP32) l.variance_gpu); // input (should be FP32) copy_ongpu(l.outputs*l.batch, l.x_norm_gpu, 1, l.delta_gpu, 1); #else backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h); backward_scale_gpu(l.x_norm_gpu, l.delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.scale_updates_gpu); scale_bias_gpu(l.delta_gpu, l.scales_gpu, l.batch, l.out_c, l.out_h*l.out_w); fast_mean_delta_gpu(l.delta_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.mean_delta_gpu); fast_variance_delta_gpu(l.x_gpu, l.delta_gpu, l.mean_gpu, l.variance_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.variance_delta_gpu); normalize_delta_gpu(l.x_gpu, l.mean_gpu, l.variance_gpu, l.mean_delta_gpu, l.variance_delta_gpu, l.batch, l.out_c, l.out_w*l.out_h, l.delta_gpu); #endif if (l.type == BATCHNORM) copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1); } #endif