#include "route_layer.h" #include "cuda.h" #include "blas.h" #include route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes) { fprintf(stderr,"route "); route_layer l = {0}; l.type = ROUTE; l.batch = batch; l.n = n; l.input_layers = input_layers; l.input_sizes = input_sizes; int i; int outputs = 0; for(i = 0; i < n; ++i){ fprintf(stderr," %d", input_layers[i]); outputs += input_sizes[i]; } fprintf(stderr, "\n"); l.outputs = outputs; l.inputs = outputs; l.delta = calloc(outputs*batch, sizeof(float)); l.output = calloc(outputs*batch, sizeof(float));; l.forward = forward_route_layer; l.backward = backward_route_layer; #ifdef GPU l.forward_gpu = forward_route_layer_gpu; l.backward_gpu = backward_route_layer_gpu; l.delta_gpu = cuda_make_array(l.delta, outputs*batch); l.output_gpu = cuda_make_array(l.output, outputs*batch); #endif return l; } void resize_route_layer(route_layer *l, network *net) { int i; layer first = net->layers[l->input_layers[0]]; l->out_w = first.out_w; l->out_h = first.out_h; l->out_c = first.out_c; l->outputs = first.outputs; l->input_sizes[0] = first.outputs; for(i = 1; i < l->n; ++i){ int index = l->input_layers[i]; layer next = net->layers[index]; l->outputs += next.outputs; l->input_sizes[i] = next.outputs; if(next.out_w == first.out_w && next.out_h == first.out_h){ l->out_c += next.out_c; }else{ printf("%d %d, %d %d\n", next.out_w, next.out_h, first.out_w, first.out_h); l->out_h = l->out_w = l->out_c = 0; } } l->inputs = l->outputs; l->delta = realloc(l->delta, l->outputs*l->batch*sizeof(float)); l->output = realloc(l->output, l->outputs*l->batch*sizeof(float)); #ifdef GPU cuda_free(l->output_gpu); cuda_free(l->delta_gpu); l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); #endif } void forward_route_layer(const route_layer l, network_state state) { int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *input = state.net.layers[index].output; int input_size = l.input_sizes[i]; for(j = 0; j < l.batch; ++j){ copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1); } offset += input_size; } } void backward_route_layer(const route_layer l, network_state state) { int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *delta = state.net.layers[index].delta; int input_size = l.input_sizes[i]; for(j = 0; j < l.batch; ++j){ axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1); } offset += input_size; } } #ifdef GPU void forward_route_layer_gpu(const route_layer l, network_state state) { int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *input = state.net.layers[index].output_gpu; int input_size = l.input_sizes[i]; for(j = 0; j < l.batch; ++j){ copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1); } offset += input_size; } } void backward_route_layer_gpu(const route_layer l, network_state state) { int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *delta = state.net.layers[index].delta_gpu; int input_size = l.input_sizes[i]; for(j = 0; j < l.batch; ++j){ axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1); } offset += input_size; } } #endif