#include "yolo_layer.h" #include "activations.h" #include "blas.h" #include "box.h" #include "cuda.h" #include "utils.h" #include #include #include #include layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes) { int i; layer l = {0}; l.type = YOLO; l.n = n; l.total = total; l.batch = batch; l.h = h; l.w = w; l.c = n*(classes + 4 + 1); l.out_w = l.w; l.out_h = l.h; l.out_c = l.c; l.classes = classes; l.cost = calloc(1, sizeof(float)); l.biases = calloc(total*2, sizeof(float)); if(mask) l.mask = mask; else{ l.mask = calloc(n, sizeof(int)); for(i = 0; i < n; ++i){ l.mask[i] = i; } } l.bias_updates = calloc(n*2, sizeof(float)); l.outputs = h*w*n*(classes + 4 + 1); l.inputs = l.outputs; l.max_boxes = max_boxes; l.truths = l.max_boxes*(4 + 1); // 90*(4 + 1); l.delta = calloc(batch*l.outputs, sizeof(float)); l.output = calloc(batch*l.outputs, sizeof(float)); for(i = 0; i < total*2; ++i){ l.biases[i] = .5; } l.forward = forward_yolo_layer; l.backward = backward_yolo_layer; #ifdef GPU l.forward_gpu = forward_yolo_layer_gpu; l.backward_gpu = backward_yolo_layer_gpu; l.output_gpu = cuda_make_array(l.output, batch*l.outputs); l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); #endif fprintf(stderr, "detection\n"); srand(0); return l; } void resize_yolo_layer(layer *l, int w, int h) { l->w = w; l->h = h; l->outputs = h*w*l->n*(l->classes + 4 + 1); l->inputs = l->outputs; l->output = realloc(l->output, l->batch*l->outputs*sizeof(float)); l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float)); #ifdef GPU cuda_free(l->delta_gpu); cuda_free(l->output_gpu); l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs); l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs); #endif } box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride) { box b; b.x = (i + x[index + 0*stride]) / lw; b.y = (j + x[index + 1*stride]) / lh; b.w = exp(x[index + 2*stride]) * biases[2*n] / w; b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h; return b; } float delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride) { box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride); float iou = box_iou(pred, truth); float tx = (truth.x*lw - i); float ty = (truth.y*lh - j); float tw = log(truth.w*w / biases[2*n]); float th = log(truth.h*h / biases[2*n + 1]); delta[index + 0*stride] = scale * (tx - x[index + 0*stride]); delta[index + 1*stride] = scale * (ty - x[index + 1*stride]); delta[index + 2*stride] = scale * (tw - x[index + 2*stride]); delta[index + 3*stride] = scale * (th - x[index + 3*stride]); return iou; } void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss) { int n; if (delta[index]){ delta[index + stride*class_id] = 1 - output[index + stride*class_id]; if(avg_cat) *avg_cat += output[index + stride*class_id]; return; } // Focal loss if (focal_loss) { // Focal Loss float alpha = 0.5; // 0.25 or 0.5 //float gamma = 2; // hardcoded in many places of the grad-formula int ti = index + stride*class_id; float pt = output[ti] + 0.000000000000001F; // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832 //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss for (n = 0; n < classes; ++n) { delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]); delta[index + stride*n] *= alpha*grad; if (n == class_id) *avg_cat += output[index + stride*n]; } } else { // default for (n = 0; n < classes; ++n) { delta[index + stride*n] = ((n == class_id) ? 1 : 0) - output[index + stride*n]; if (n == class_id && avg_cat) *avg_cat += output[index + stride*n]; } } } static int entry_index(layer l, int batch, int location, int entry) { int n = location / (l.w*l.h); int loc = location % (l.w*l.h); return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc; } static box float_to_box_stride(float *f, int stride) { box b = { 0 }; b.x = f[0]; b.y = f[1 * stride]; b.w = f[2 * stride]; b.h = f[3 * stride]; return b; } void forward_yolo_layer(const layer l, network_state state) { int i,j,b,t,n; memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); #ifndef GPU for (b = 0; b < l.batch; ++b){ for(n = 0; n < l.n; ++n){ int index = entry_index(l, b, n*l.w*l.h, 0); activate_array(l.output + index, 2*l.w*l.h, LOGISTIC); index = entry_index(l, b, n*l.w*l.h, 4); activate_array(l.output + index, (1+l.classes)*l.w*l.h, LOGISTIC); } } #endif memset(l.delta, 0, l.outputs * l.batch * sizeof(float)); if(!state.train) return; float avg_iou = 0; float recall = 0; float recall75 = 0; float avg_cat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; int class_count = 0; *(l.cost) = 0; for (b = 0; b < l.batch; ++b) { for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w; ++i) { for (n = 0; n < l.n; ++n) { int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0); box pred = get_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h); float best_iou = 0; int best_t = 0; for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); if(!truth.x) break; float iou = box_iou(pred, truth); if (iou > best_iou) { best_iou = iou; best_t = t; } } int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4); avg_anyobj += l.output[obj_index]; l.delta[obj_index] = 0 - l.output[obj_index]; if (best_iou > l.ignore_thresh) { l.delta[obj_index] = 0; } if (best_iou > l.truth_thresh) { l.delta[obj_index] = 1 - l.output[obj_index]; int class = state.truth[best_t*(4 + 1) + b*l.truths + 4]; if (l.map) class = l.map[class]; int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1); delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, 0, l.focal_loss); box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1); delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); } } } } for(t = 0; t < l.max_boxes; ++t){ box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1); if(!truth.x) break; float best_iou = 0; int best_n = 0; i = (truth.x * l.w); j = (truth.y * l.h); box truth_shift = truth; truth_shift.x = truth_shift.y = 0; for(n = 0; n < l.total; ++n){ box pred = {0}; pred.w = l.biases[2*n]/ state.net.w; pred.h = l.biases[2*n+1]/ state.net.h; float iou = box_iou(pred, truth_shift); if (iou > best_iou){ best_iou = iou; best_n = n; } } int mask_n = int_index(l.mask, best_n, l.n); if(mask_n >= 0){ int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0); float iou = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2-truth.w*truth.h), l.w*l.h); int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4); avg_obj += l.output[obj_index]; l.delta[obj_index] = 1 - l.output[obj_index]; int class = state.truth[t*(4 + 1) + b*l.truths + 4]; if (l.map) class = l.map[class]; int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1); delta_yolo_class(l.output, l.delta, class_index, class, l.classes, l.w*l.h, &avg_cat, l.focal_loss); ++count; ++class_count; if(iou > .5) recall += 1; if(iou > .75) recall75 += 1; avg_iou += iou; } } } *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", state.index, avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, recall75/count, count); } void backward_yolo_layer(const layer l, network_state state) { axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); } void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter) { int i; int new_w=0; int new_h=0; if (letter) { if (((float)netw / w) < ((float)neth / h)) { new_w = netw; new_h = (h * netw) / w; } else { new_h = neth; new_w = (w * neth) / h; } } else { new_w = netw; new_h = neth; } for (i = 0; i < n; ++i){ box b = dets[i].bbox; b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw); b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth); b.w *= (float)netw/new_w; b.h *= (float)neth/new_h; if(!relative){ b.x *= w; b.w *= w; b.y *= h; b.h *= h; } dets[i].bbox = b; } } int yolo_num_detections(layer l, float thresh) { int i, n; int count = 0; for (i = 0; i < l.w*l.h; ++i){ for(n = 0; n < l.n; ++n){ int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); if(l.output[obj_index] > thresh){ ++count; } } } return count; } void avg_flipped_yolo(layer l) { int i,j,n,z; float *flip = l.output + l.outputs; for (j = 0; j < l.h; ++j) { for (i = 0; i < l.w/2; ++i) { for (n = 0; n < l.n; ++n) { for(z = 0; z < l.classes + 4 + 1; ++z){ int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i; int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1); float swap = flip[i1]; flip[i1] = flip[i2]; flip[i2] = swap; if(z == 0){ flip[i1] = -flip[i1]; flip[i2] = -flip[i2]; } } } } } for(i = 0; i < l.outputs; ++i){ l.output[i] = (l.output[i] + flip[i])/2.; } } int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter) { int i,j,n; float *predictions = l.output; if (l.batch == 2) avg_flipped_yolo(l); int count = 0; for (i = 0; i < l.w*l.h; ++i){ int row = i / l.w; int col = i % l.w; for(n = 0; n < l.n; ++n){ int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4); float objectness = predictions[obj_index]; if(objectness <= thresh) continue; int box_index = entry_index(l, 0, n*l.w*l.h + i, 0); dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h); dets[count].objectness = objectness; dets[count].classes = l.classes; for(j = 0; j < l.classes; ++j){ int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j); float prob = objectness*predictions[class_index]; dets[count].prob[j] = (prob > thresh) ? prob : 0; } ++count; } } correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter); return count; } #ifdef GPU void forward_yolo_layer_gpu(const layer l, network_state state) { copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); int b, n; for (b = 0; b < l.batch; ++b){ for(n = 0; n < l.n; ++n){ int index = entry_index(l, b, n*l.w*l.h, 0); activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); index = entry_index(l, b, n*l.w*l.h, 4); activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); } } if(!state.train || l.onlyforward){ cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); return; } //cuda_pull_array(l.output_gpu, state.input, l.batch*l.inputs); float *in_cpu = calloc(l.batch*l.inputs, sizeof(float)); cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs); float *truth_cpu = 0; if (state.truth) { int num_truth = l.batch*l.truths; truth_cpu = calloc(num_truth, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, num_truth); } network_state cpu_state = state; cpu_state.net = state.net; cpu_state.index = state.index; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_yolo_layer(l, cpu_state); //forward_yolo_layer(l, state); cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); free(in_cpu); if (cpu_state.truth) free(cpu_state.truth); } void backward_yolo_layer_gpu(const layer l, network_state state) { axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); } #endif