#pragma once #ifdef YOLODLL_EXPORTS #if defined(_MSC_VER) #define YOLODLL_API __declspec(dllexport) #else #define YOLODLL_API __attribute__((visibility("default"))) #endif #else #if defined(_MSC_VER) #define YOLODLL_API __declspec(dllimport) #else #define YOLODLL_API #endif #endif struct bbox_t { unsigned int x, y, w, h; // (x,y) - top-left corner, (w, h) - width & height of bounded box float prob; // confidence - probability that the object was found correctly unsigned int obj_id; // class of object - from range [0, classes-1] unsigned int track_id; // tracking id for video (0 - untracked, 1 - inf - tracked object) unsigned int frames_counter;// counter of frames on which the object was detected }; struct image_t { int h; // height int w; // width int c; // number of chanels (3 - for RGB) float *data; // pointer to the image data }; #ifdef __cplusplus #include #include #include #include #ifdef OPENCV #include // C++ #include "opencv2/highgui/highgui_c.h" // C #include "opencv2/imgproc/imgproc_c.h" // C #endif // OPENCV class Detector { std::shared_ptr detector_gpu_ptr; std::deque> prev_bbox_vec_deque; const int cur_gpu_id; public: float nms = .4; bool wait_stream; YOLODLL_API Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0); YOLODLL_API ~Detector(); YOLODLL_API std::vector detect(std::string image_filename, float thresh = 0.2, bool use_mean = false); YOLODLL_API std::vector detect(image_t img, float thresh = 0.2, bool use_mean = false); static YOLODLL_API image_t load_image(std::string image_filename); static YOLODLL_API void free_image(image_t m); YOLODLL_API int get_net_width() const; YOLODLL_API int get_net_height() const; YOLODLL_API std::vector tracking_id(std::vector cur_bbox_vec, bool const change_history = true, int const frames_story = 10, int const max_dist = 150); std::vector detect_resized(image_t img, int init_w, int init_h, float thresh = 0.2, bool use_mean = false) { if (img.data == NULL) throw std::runtime_error("Image is empty"); auto detection_boxes = detect(img, thresh, use_mean); float wk = (float)init_w / img.w, hk = (float)init_h / img.h; for (auto &i : detection_boxes) i.x *= wk, i.w *= wk, i.y *= hk, i.h *= hk; return detection_boxes; } #ifdef OPENCV std::vector detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false) { if(mat.data == NULL) throw std::runtime_error("Image is empty"); auto image_ptr = mat_to_image_resize(mat); return detect_resized(*image_ptr, mat.cols, mat.rows, thresh, use_mean); } std::shared_ptr mat_to_image_resize(cv::Mat mat) const { if (mat.data == NULL) return std::shared_ptr(NULL); cv::Mat det_mat; cv::resize(mat, det_mat, cv::Size(get_net_width(), get_net_height())); return mat_to_image(det_mat); } static std::shared_ptr mat_to_image(cv::Mat img_src) { cv::Mat img; cv::cvtColor(img_src, img, cv::COLOR_RGB2BGR); std::shared_ptr image_ptr(new image_t, [](image_t *img) { free_image(*img); delete img; }); std::shared_ptr ipl_small = std::make_shared(img); *image_ptr = ipl_to_image(ipl_small.get()); return image_ptr; } private: static image_t ipl_to_image(IplImage* src) { unsigned char *data = (unsigned char *)src->imageData; int h = src->height; int w = src->width; int c = src->nChannels; int step = src->widthStep; image_t out = make_image_custom(w, h, c); int count = 0; for (int k = 0; k < c; ++k) { for (int i = 0; i < h; ++i) { int i_step = i*step; for (int j = 0; j < w; ++j) { out.data[count++] = data[i_step + j*c + k] / 255.; } } } return out; } static image_t make_empty_image(int w, int h, int c) { image_t out; out.data = 0; out.h = h; out.w = w; out.c = c; return out; } static image_t make_image_custom(int w, int h, int c) { image_t out = make_empty_image(w, h, c); out.data = (float *)calloc(h*w*c, sizeof(float)); return out; } #endif // OPENCV }; #if defined(TRACK_OPTFLOW) && defined(OPENCV) && defined(GPU) #include #include #include #include class Tracker_optflow { public: const int gpu_count; const int gpu_id; const int flow_error; Tracker_optflow(int _gpu_id = 0, int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) : gpu_count(cv::cuda::getCudaEnabledDeviceCount()), gpu_id(std::min(_gpu_id, gpu_count-1)), flow_error((_flow_error > 0)? _flow_error:(win_size*4)) { int const old_gpu_id = cv::cuda::getDevice(); cv::cuda::setDevice(gpu_id); stream = cv::cuda::Stream(); sync_PyrLKOpticalFlow_gpu = cv::cuda::SparsePyrLKOpticalFlow::create(); sync_PyrLKOpticalFlow_gpu->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31 sync_PyrLKOpticalFlow_gpu->setMaxLevel(max_level); // +- 3 pt sync_PyrLKOpticalFlow_gpu->setNumIters(iterations); // 2000, def: 30 cv::cuda::setDevice(old_gpu_id); } // just to avoid extra allocations cv::cuda::GpuMat src_mat_gpu; cv::cuda::GpuMat dst_mat_gpu, dst_grey_gpu; cv::cuda::GpuMat prev_pts_flow_gpu, cur_pts_flow_gpu; cv::cuda::GpuMat status_gpu, err_gpu; cv::cuda::GpuMat src_grey_gpu; // used in both functions cv::Ptr sync_PyrLKOpticalFlow_gpu; cv::cuda::Stream stream; std::vector cur_bbox_vec; std::vector good_bbox_vec_flags; cv::Mat prev_pts_flow_cpu; void update_cur_bbox_vec(std::vector _cur_bbox_vec) { cur_bbox_vec = _cur_bbox_vec; good_bbox_vec_flags = std::vector(cur_bbox_vec.size(), true); cv::Mat prev_pts, cur_pts_flow_cpu; for (auto &i : cur_bbox_vec) { float x_center = (i.x + i.w / 2.0F); float y_center = (i.y + i.h / 2.0F); prev_pts.push_back(cv::Point2f(x_center, y_center)); } if (prev_pts.rows == 0) prev_pts_flow_cpu = cv::Mat(); else cv::transpose(prev_pts, prev_pts_flow_cpu); if (prev_pts_flow_gpu.cols < prev_pts_flow_cpu.cols) { prev_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); cur_pts_flow_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), prev_pts_flow_cpu.type()); status_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_8UC1); err_gpu = cv::cuda::GpuMat(prev_pts_flow_cpu.size(), CV_32FC1); } prev_pts_flow_gpu.upload(cv::Mat(prev_pts_flow_cpu), stream); } void update_tracking_flow(cv::Mat src_mat, std::vector _cur_bbox_vec) { int const old_gpu_id = cv::cuda::getDevice(); if (old_gpu_id != gpu_id) cv::cuda::setDevice(gpu_id); if (src_mat.channels() == 3) { if (src_mat_gpu.cols == 0) { src_mat_gpu = cv::cuda::GpuMat(src_mat.size(), src_mat.type()); src_grey_gpu = cv::cuda::GpuMat(src_mat.size(), CV_8UC1); } update_cur_bbox_vec(_cur_bbox_vec); //src_grey_gpu.upload(src_mat, stream); // use BGR src_mat_gpu.upload(src_mat, stream); cv::cuda::cvtColor(src_mat_gpu, src_grey_gpu, CV_BGR2GRAY, 1, stream); } if (old_gpu_id != gpu_id) cv::cuda::setDevice(old_gpu_id); } std::vector tracking_flow(cv::Mat dst_mat, bool check_error = true) { if (sync_PyrLKOpticalFlow_gpu.empty()) { std::cout << "sync_PyrLKOpticalFlow_gpu isn't initialized \n"; return cur_bbox_vec; } int const old_gpu_id = cv::cuda::getDevice(); if(old_gpu_id != gpu_id) cv::cuda::setDevice(gpu_id); if (dst_mat_gpu.cols == 0) { dst_mat_gpu = cv::cuda::GpuMat(dst_mat.size(), dst_mat.type()); dst_grey_gpu = cv::cuda::GpuMat(dst_mat.size(), CV_8UC1); } //dst_grey_gpu.upload(dst_mat, stream); // use BGR dst_mat_gpu.upload(dst_mat, stream); cv::cuda::cvtColor(dst_mat_gpu, dst_grey_gpu, CV_BGR2GRAY, 1, stream); if (src_grey_gpu.rows != dst_grey_gpu.rows || src_grey_gpu.cols != dst_grey_gpu.cols) { stream.waitForCompletion(); src_grey_gpu = dst_grey_gpu.clone(); cv::cuda::setDevice(old_gpu_id); return cur_bbox_vec; } ////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x sync_PyrLKOpticalFlow_gpu->calc(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, err_gpu, stream); // OpenCV 3.x cv::Mat cur_pts_flow_cpu; cur_pts_flow_gpu.download(cur_pts_flow_cpu, stream); dst_grey_gpu.copyTo(src_grey_gpu, stream); cv::Mat err_cpu, status_cpu; err_gpu.download(err_cpu, stream); status_gpu.download(status_cpu, stream); stream.waitForCompletion(); std::vector result_bbox_vec; if (err_cpu.cols == cur_bbox_vec.size() && status_cpu.cols == cur_bbox_vec.size()) { for (size_t i = 0; i < cur_bbox_vec.size(); ++i) { cv::Point2f cur_key_pt = cur_pts_flow_cpu.at(0, i); cv::Point2f prev_key_pt = prev_pts_flow_cpu.at(0, i); float moved_x = cur_key_pt.x - prev_key_pt.x; float moved_y = cur_key_pt.y - prev_key_pt.y; if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i]) if (err_cpu.at(0, i) < flow_error && status_cpu.at(0, i) != 0 && ((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0) { cur_bbox_vec[i].x += moved_x + 0.5; cur_bbox_vec[i].y += moved_y + 0.5; result_bbox_vec.push_back(cur_bbox_vec[i]); } else good_bbox_vec_flags[i] = false; else good_bbox_vec_flags[i] = false; //if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]); } } cur_pts_flow_gpu.swap(prev_pts_flow_gpu); cur_pts_flow_cpu.copyTo(prev_pts_flow_cpu); if (old_gpu_id != gpu_id) cv::cuda::setDevice(old_gpu_id); return result_bbox_vec; } }; #elif defined(TRACK_OPTFLOW) && defined(OPENCV) //#include #include class Tracker_optflow { public: const int flow_error; Tracker_optflow(int win_size = 9, int max_level = 3, int iterations = 8000, int _flow_error = -1) : flow_error((_flow_error > 0)? _flow_error:(win_size*4)) { sync_PyrLKOpticalFlow = cv::SparsePyrLKOpticalFlow::create(); sync_PyrLKOpticalFlow->setWinSize(cv::Size(win_size, win_size)); // 9, 15, 21, 31 sync_PyrLKOpticalFlow->setMaxLevel(max_level); // +- 3 pt } // just to avoid extra allocations cv::Mat dst_grey; cv::Mat prev_pts_flow, cur_pts_flow; cv::Mat status, err; cv::Mat src_grey; // used in both functions cv::Ptr sync_PyrLKOpticalFlow; std::vector cur_bbox_vec; std::vector good_bbox_vec_flags; void update_cur_bbox_vec(std::vector _cur_bbox_vec) { cur_bbox_vec = _cur_bbox_vec; good_bbox_vec_flags = std::vector(cur_bbox_vec.size(), true); cv::Mat prev_pts, cur_pts_flow; for (auto &i : cur_bbox_vec) { float x_center = (i.x + i.w / 2.0F); float y_center = (i.y + i.h / 2.0F); prev_pts.push_back(cv::Point2f(x_center, y_center)); } if (prev_pts.rows == 0) prev_pts_flow = cv::Mat(); else cv::transpose(prev_pts, prev_pts_flow); } void update_tracking_flow(cv::Mat new_src_mat, std::vector _cur_bbox_vec) { if (new_src_mat.channels() == 3) { update_cur_bbox_vec(_cur_bbox_vec); cv::cvtColor(new_src_mat, src_grey, CV_BGR2GRAY, 1); } } std::vector tracking_flow(cv::Mat new_dst_mat, bool check_error = true) { if (sync_PyrLKOpticalFlow.empty()) { std::cout << "sync_PyrLKOpticalFlow isn't initialized \n"; return cur_bbox_vec; } cv::cvtColor(new_dst_mat, dst_grey, CV_BGR2GRAY, 1); if (src_grey.rows != dst_grey.rows || src_grey.cols != dst_grey.cols) { src_grey = dst_grey.clone(); return cur_bbox_vec; } if (prev_pts_flow.cols < 1) { return cur_bbox_vec; } ////sync_PyrLKOpticalFlow_gpu.sparse(src_grey_gpu, dst_grey_gpu, prev_pts_flow_gpu, cur_pts_flow_gpu, status_gpu, &err_gpu); // OpenCV 2.4.x sync_PyrLKOpticalFlow->calc(src_grey, dst_grey, prev_pts_flow, cur_pts_flow, status, err); // OpenCV 3.x dst_grey.copyTo(src_grey); std::vector result_bbox_vec; if (err.rows == cur_bbox_vec.size() && status.rows == cur_bbox_vec.size()) { for (size_t i = 0; i < cur_bbox_vec.size(); ++i) { cv::Point2f cur_key_pt = cur_pts_flow.at(0, i); cv::Point2f prev_key_pt = prev_pts_flow.at(0, i); float moved_x = cur_key_pt.x - prev_key_pt.x; float moved_y = cur_key_pt.y - prev_key_pt.y; if (abs(moved_x) < 100 && abs(moved_y) < 100 && good_bbox_vec_flags[i]) if (err.at(0, i) < flow_error && status.at(0, i) != 0 && ((float)cur_bbox_vec[i].x + moved_x) > 0 && ((float)cur_bbox_vec[i].y + moved_y) > 0) { cur_bbox_vec[i].x += moved_x + 0.5; cur_bbox_vec[i].y += moved_y + 0.5; result_bbox_vec.push_back(cur_bbox_vec[i]); } else good_bbox_vec_flags[i] = false; else good_bbox_vec_flags[i] = false; //if(!check_error && !good_bbox_vec_flags[i]) result_bbox_vec.push_back(cur_bbox_vec[i]); } } prev_pts_flow = cur_pts_flow.clone(); return result_bbox_vec; } }; #else class Tracker_optflow {}; #endif // defined(TRACK_OPTFLOW) && defined(OPENCV) #ifdef OPENCV static cv::Scalar obj_id_to_color(int obj_id) { int const colors[6][3] = { { 1,0,1 },{ 0,0,1 },{ 0,1,1 },{ 0,1,0 },{ 1,1,0 },{ 1,0,0 } }; int const offset = obj_id * 123457 % 6; int const color_scale = 150 + (obj_id * 123457) % 100; cv::Scalar color(colors[offset][0], colors[offset][1], colors[offset][2]); color *= color_scale; return color; } class preview_boxes_t { enum { frames_history = 30 }; // how long to keep the history saved struct preview_box_track_t { unsigned int track_id, obj_id, last_showed_frames_ago; bool current_detection; bbox_t bbox; cv::Mat mat_obj, mat_resized_obj; preview_box_track_t() : track_id(0), obj_id(0), last_showed_frames_ago(frames_history), current_detection(false) {} }; std::vector preview_box_track_id; size_t const preview_box_size, bottom_offset; bool const one_off_detections; public: preview_boxes_t(size_t _preview_box_size = 100, size_t _bottom_offset = 100, bool _one_off_detections = false) : preview_box_size(_preview_box_size), bottom_offset(_bottom_offset), one_off_detections(_one_off_detections) {} void set(cv::Mat src_mat, std::vector result_vec) { size_t const count_preview_boxes = src_mat.cols / preview_box_size; if (preview_box_track_id.size() != count_preview_boxes) preview_box_track_id.resize(count_preview_boxes); // increment frames history for (auto &i : preview_box_track_id) i.last_showed_frames_ago = std::min((unsigned)frames_history, i.last_showed_frames_ago + 1); // occupy empty boxes for (auto &k : result_vec) { bool found = false; // find the same (track_id) for (auto &i : preview_box_track_id) { if (i.track_id == k.track_id) { if (!one_off_detections) i.last_showed_frames_ago = 0; // for tracked objects found = true; break; } } if (!found) { // find empty box for (auto &i : preview_box_track_id) { if (i.last_showed_frames_ago == frames_history) { if (!one_off_detections && k.frames_counter == 0) break; // don't show if obj isn't tracked yet i.track_id = k.track_id; i.obj_id = k.obj_id; i.bbox = k; i.last_showed_frames_ago = 0; break; } } } } // draw preview box (from old or current frame) for (size_t i = 0; i < preview_box_track_id.size(); ++i) { // get object image cv::Mat dst = preview_box_track_id[i].mat_resized_obj; preview_box_track_id[i].current_detection = false; for (auto &k : result_vec) { if (preview_box_track_id[i].track_id == k.track_id) { if (one_off_detections && preview_box_track_id[i].last_showed_frames_ago > 0) { preview_box_track_id[i].last_showed_frames_ago = frames_history; break; } bbox_t b = k; cv::Rect r(b.x, b.y, b.w, b.h); cv::Rect img_rect(cv::Point2i(0, 0), src_mat.size()); cv::Rect rect_roi = r & img_rect; if (rect_roi.width > 1 || rect_roi.height > 1) { cv::Mat roi = src_mat(rect_roi); cv::resize(roi, dst, cv::Size(preview_box_size, preview_box_size), cv::INTER_NEAREST); preview_box_track_id[i].mat_obj = roi.clone(); preview_box_track_id[i].mat_resized_obj = dst.clone(); preview_box_track_id[i].current_detection = true; preview_box_track_id[i].bbox = k; } break; } } } } void draw(cv::Mat draw_mat, bool show_small_boxes = false) { // draw preview box (from old or current frame) for (size_t i = 0; i < preview_box_track_id.size(); ++i) { auto &prev_box = preview_box_track_id[i]; // draw object image cv::Mat dst = prev_box.mat_resized_obj; if (prev_box.last_showed_frames_ago < frames_history && dst.size() == cv::Size(preview_box_size, preview_box_size)) { cv::Rect dst_rect_roi(cv::Point2i(i * preview_box_size, draw_mat.rows - bottom_offset), dst.size()); cv::Mat dst_roi = draw_mat(dst_rect_roi); dst.copyTo(dst_roi); cv::Scalar color = obj_id_to_color(prev_box.obj_id); int thickness = (prev_box.current_detection) ? 5 : 1; cv::rectangle(draw_mat, dst_rect_roi, color, thickness); unsigned int const track_id = prev_box.track_id; std::string track_id_str = (track_id > 0) ? std::to_string(track_id) : ""; putText(draw_mat, track_id_str, dst_rect_roi.tl() - cv::Point2i(-4, 5), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.9, cv::Scalar(0, 0, 0), 2); std::string size_str = std::to_string(prev_box.bbox.w) + "x" + std::to_string(prev_box.bbox.h); putText(draw_mat, size_str, dst_rect_roi.tl() + cv::Point2i(0, 12), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1); if (!one_off_detections && prev_box.current_detection) { cv::line(draw_mat, dst_rect_roi.tl() + cv::Point2i(preview_box_size, 0), cv::Point2i(prev_box.bbox.x, prev_box.bbox.y + prev_box.bbox.h), color); } if (one_off_detections && show_small_boxes) { cv::Rect src_rect_roi(cv::Point2i(prev_box.bbox.x, prev_box.bbox.y), cv::Size(prev_box.bbox.w, prev_box.bbox.h)); unsigned int const color_history = (255 * prev_box.last_showed_frames_ago) / frames_history; color = cv::Scalar(255 - 3 * color_history, 255 - 2 * color_history, 255 - 1 * color_history); if (prev_box.mat_obj.size() == src_rect_roi.size()) { prev_box.mat_obj.copyTo(draw_mat(src_rect_roi)); } cv::rectangle(draw_mat, src_rect_roi, color, thickness); putText(draw_mat, track_id_str, src_rect_roi.tl() - cv::Point2i(0, 10), cv::FONT_HERSHEY_COMPLEX_SMALL, 0.8, cv::Scalar(0, 0, 0), 1); } } } } }; #endif // OPENCV //extern "C" { #endif // __cplusplus /* // C - wrappers YOLODLL_API void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id); YOLODLL_API void delete_detector(); YOLODLL_API bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size); YOLODLL_API bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size); YOLODLL_API bbox_t* detect(image_t img, int *result_size); YOLODLL_API image_t load_img(char *image_filename); YOLODLL_API void free_img(image_t m); #ifdef __cplusplus } // extern "C" static std::shared_ptr c_detector_ptr; static std::vector c_result_vec; void create_detector(char const* cfg_filename, char const* weight_filename, int gpu_id) { c_detector_ptr = std::make_shared(cfg_filename, weight_filename, gpu_id); } void delete_detector() { c_detector_ptr.reset(); } bbox_t* detect_custom(image_t img, float thresh, bool use_mean, int *result_size) { c_result_vec = static_cast(c_detector_ptr.get())->detect(img, thresh, use_mean); *result_size = c_result_vec.size(); return c_result_vec.data(); } bbox_t* detect_resized(image_t img, int init_w, int init_h, float thresh, bool use_mean, int *result_size) { c_result_vec = static_cast(c_detector_ptr.get())->detect_resized(img, init_w, init_h, thresh, use_mean); *result_size = c_result_vec.size(); return c_result_vec.data(); } bbox_t* detect(image_t img, int *result_size) { return detect_custom(img, 0.24, true, result_size); } image_t load_img(char *image_filename) { return static_cast(c_detector_ptr.get())->load_image(image_filename); } void free_img(image_t m) { static_cast(c_detector_ptr.get())->free_image(m); } #endif // __cplusplus */