/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef OPENCV_CUDA_FILTERS_HPP #define OPENCV_CUDA_FILTERS_HPP #include "saturate_cast.hpp" #include "vec_traits.hpp" #include "vec_math.hpp" #include "type_traits.hpp" /** @file * @deprecated Use @ref cudev instead. */ //! @cond IGNORED namespace cv { namespace cuda { namespace device { template struct PointFilter { typedef typename Ptr2D::elem_type elem_type; typedef float index_type; explicit __host__ __device__ __forceinline__ PointFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f) : src(src_) { (void)fx; (void)fy; } __device__ __forceinline__ elem_type operator ()(float y, float x) const { return src(__float2int_rz(y), __float2int_rz(x)); } Ptr2D src; }; template struct LinearFilter { typedef typename Ptr2D::elem_type elem_type; typedef float index_type; explicit __host__ __device__ __forceinline__ LinearFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f) : src(src_) { (void)fx; (void)fy; } __device__ __forceinline__ elem_type operator ()(float y, float x) const { typedef typename TypeVec::cn>::vec_type work_type; work_type out = VecTraits::all(0); const int x1 = __float2int_rd(x); const int y1 = __float2int_rd(y); const int x2 = x1 + 1; const int y2 = y1 + 1; elem_type src_reg = src(y1, x1); out = out + src_reg * ((x2 - x) * (y2 - y)); src_reg = src(y1, x2); out = out + src_reg * ((x - x1) * (y2 - y)); src_reg = src(y2, x1); out = out + src_reg * ((x2 - x) * (y - y1)); src_reg = src(y2, x2); out = out + src_reg * ((x - x1) * (y - y1)); return saturate_cast(out); } Ptr2D src; }; template struct CubicFilter { typedef typename Ptr2D::elem_type elem_type; typedef float index_type; typedef typename TypeVec::cn>::vec_type work_type; explicit __host__ __device__ __forceinline__ CubicFilter(const Ptr2D& src_, float fx = 0.f, float fy = 0.f) : src(src_) { (void)fx; (void)fy; } static __device__ __forceinline__ float bicubicCoeff(float x_) { float x = fabsf(x_); if (x <= 1.0f) { return x * x * (1.5f * x - 2.5f) + 1.0f; } else if (x < 2.0f) { return x * (x * (-0.5f * x + 2.5f) - 4.0f) + 2.0f; } else { return 0.0f; } } __device__ elem_type operator ()(float y, float x) const { const float xmin = ::ceilf(x - 2.0f); const float xmax = ::floorf(x + 2.0f); const float ymin = ::ceilf(y - 2.0f); const float ymax = ::floorf(y + 2.0f); work_type sum = VecTraits::all(0); float wsum = 0.0f; for (float cy = ymin; cy <= ymax; cy += 1.0f) { for (float cx = xmin; cx <= xmax; cx += 1.0f) { const float w = bicubicCoeff(x - cx) * bicubicCoeff(y - cy); sum = sum + w * src(__float2int_rd(cy), __float2int_rd(cx)); wsum += w; } } work_type res = (!wsum)? VecTraits::all(0) : sum / wsum; return saturate_cast(res); } Ptr2D src; }; // for integer scaling template struct IntegerAreaFilter { typedef typename Ptr2D::elem_type elem_type; typedef float index_type; explicit __host__ __device__ __forceinline__ IntegerAreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_) : src(src_), scale_x(scale_x_), scale_y(scale_y_), scale(1.f / (scale_x * scale_y)) {} __device__ __forceinline__ elem_type operator ()(float y, float x) const { float fsx1 = x * scale_x; float fsx2 = fsx1 + scale_x; int sx1 = __float2int_ru(fsx1); int sx2 = __float2int_rd(fsx2); float fsy1 = y * scale_y; float fsy2 = fsy1 + scale_y; int sy1 = __float2int_ru(fsy1); int sy2 = __float2int_rd(fsy2); typedef typename TypeVec::cn>::vec_type work_type; work_type out = VecTraits::all(0.f); for(int dy = sy1; dy < sy2; ++dy) for(int dx = sx1; dx < sx2; ++dx) { out = out + src(dy, dx) * scale; } return saturate_cast(out); } Ptr2D src; float scale_x, scale_y ,scale; }; template struct AreaFilter { typedef typename Ptr2D::elem_type elem_type; typedef float index_type; explicit __host__ __device__ __forceinline__ AreaFilter(const Ptr2D& src_, float scale_x_, float scale_y_) : src(src_), scale_x(scale_x_), scale_y(scale_y_){} __device__ __forceinline__ elem_type operator ()(float y, float x) const { float fsx1 = x * scale_x; float fsx2 = fsx1 + scale_x; int sx1 = __float2int_ru(fsx1); int sx2 = __float2int_rd(fsx2); float fsy1 = y * scale_y; float fsy2 = fsy1 + scale_y; int sy1 = __float2int_ru(fsy1); int sy2 = __float2int_rd(fsy2); float scale = 1.f / (fminf(scale_x, src.width - fsx1) * fminf(scale_y, src.height - fsy1)); typedef typename TypeVec::cn>::vec_type work_type; work_type out = VecTraits::all(0.f); for (int dy = sy1; dy < sy2; ++dy) { for (int dx = sx1; dx < sx2; ++dx) out = out + src(dy, dx) * scale; if (sx1 > fsx1) out = out + src(dy, (sx1 -1) ) * ((sx1 - fsx1) * scale); if (sx2 < fsx2) out = out + src(dy, sx2) * ((fsx2 -sx2) * scale); } if (sy1 > fsy1) for (int dx = sx1; dx < sx2; ++dx) out = out + src( (sy1 - 1) , dx) * ((sy1 -fsy1) * scale); if (sy2 < fsy2) for (int dx = sx1; dx < sx2; ++dx) out = out + src(sy2, dx) * ((fsy2 -sy2) * scale); if ((sy1 > fsy1) && (sx1 > fsx1)) out = out + src( (sy1 - 1) , (sx1 - 1)) * ((sy1 -fsy1) * (sx1 -fsx1) * scale); if ((sy1 > fsy1) && (sx2 < fsx2)) out = out + src( (sy1 - 1) , sx2) * ((sy1 -fsy1) * (fsx2 -sx2) * scale); if ((sy2 < fsy2) && (sx2 < fsx2)) out = out + src(sy2, sx2) * ((fsy2 -sy2) * (fsx2 -sx2) * scale); if ((sy2 < fsy2) && (sx1 > fsx1)) out = out + src(sy2, (sx1 - 1)) * ((fsy2 -sy2) * (sx1 -fsx1) * scale); return saturate_cast(out); } Ptr2D src; float scale_x, scale_y; int width, haight; }; }}} // namespace cv { namespace cuda { namespace cudev //! @endcond #endif // OPENCV_CUDA_FILTERS_HPP