import asyncio import datetime import io import json import time import uuid import fitz from fastapi import HTTPException from sqlalchemy import or_ from Log import logger from app.config.agent_base_url import RG_CHAT_DIALOG, DF_CHAT_AGENT, DF_CHAT_PARAMETERS, RG_CHAT_SESSIONS, \ DF_CHAT_WORKFLOW, DF_UPLOAD_FILE, RG_ORIGINAL_URL, RG_CHAT_UPDATE_URL, DF_WORKFLOW_DRAFT, DF_WORKFLOW_PUBLISH from app.config.config import settings from app.config.const import * from app.models import DialogModel, ApiTokenModel, UserTokenModel, ComplexChatSessionDao, ChatDataRequest, \ ComplexChatDao, KnowledgeModel, UserModel, KnowledgeUserModel from app.models.v2.session_model import ChatSessionDao, ChatData from app.service.v2.app_driver.chat_agent import ChatAgent from app.service.v2.app_driver.chat_data import ChatBaseApply from app.service.v2.app_driver.chat_dialog import ChatDialog from app.service.v2.app_driver.chat_workflow import ChatWorkflow from docx import Document from dashscope import get_tokenizer # dashscope版本 >= 1.14.0 async def update_session_log(db, session_id: str, message: dict, conversation_id: str): await ChatSessionDao(db).update_session_by_id( session_id=session_id, session=None, message=message, conversation_id=conversation_id ) async def add_session_log(db, session_id: str, question: str, chat_id: str, user_id, event_type: str, conversation_id: str, agent_type, query: dict = None): try: session = await ChatSessionDao(db).update_or_insert_by_id( session_id=session_id, name=question[:255], agent_id=chat_id, agent_type=agent_type, tenant_id=user_id, message={"role": "user", "content": question, "query": query}, conversation_id=conversation_id, event_type=event_type ) return session except Exception as e: logger.error(e) return None async def get_app_token(db, app_id): app_token = db.query(UserTokenModel).filter_by(id=app_id).first() if app_token: return app_token.access_token return "" async def get_chat_token(db, app_id): app_token = db.query(ApiTokenModel).filter_by(app_id=app_id).first() if app_token: return app_token.token return "" async def get_workflow_token(db): user_token = db.query(UserTokenModel).filter(UserTokenModel.id == workflow_server).first() return user_token.access_token if user_token else "" async def add_chat_token(db, data): try: api_token = ApiTokenModel(**data) db.add(api_token) db.commit() except Exception as e: logger.error(e) async def get_chat_info(db, chat_id: str): return db.query(DialogModel).filter_by(id=chat_id, status=Dialog_STATSU_ON).first() async def get_chat_object(mode): if mode == workflow_chat: url = settings.dify_base_url + DF_CHAT_WORKFLOW return ChatWorkflow(), url else: url = settings.dify_base_url + DF_CHAT_AGENT return ChatAgent(), url async def get_user_kb(db, user_id: int, kb_ids: list) -> list: res = [] user = db.query(UserModel).filter(UserModel.id == user_id).first() if user is None: return res query = db.query(KnowledgeModel) if user.permission != "admin": klg_list = [j.id for i in user.groups for j in i.knowledges] for i in db.query(KnowledgeUserModel).filter(KnowledgeUserModel.user_id == user_id, KnowledgeUserModel.status == 1).all(): if i.kb_id not in klg_list: klg_list.append(i.kb_id) query = query.filter(or_(KnowledgeModel.id.in_(klg_list), KnowledgeModel.tenant_id == str(user_id))) kb_list = query.all() for kb in kb_list: if kb.id in kb_ids: if kb.permission == "team": res.append(kb.id) elif kb.tenant_id == str(user_id): res.append(kb.id) return res else: return kb_ids async def service_chat_dialog(db, chat_id: str, question: str, session_id: str, user_id: int, mode: str, kb_ids: list): conversation_id = "" token = await get_chat_token(db, rg_api_token) url = settings.fwr_base_url + RG_CHAT_DIALOG.format(chat_id) kb_id = await get_user_kb(db, user_id, kb_ids) if not kb_id: yield "data: " + json.dumps({"message": smart_message_error, "error": "\n**ERROR**: The agent has no knowledge base to work with!", "status": http_400}, ensure_ascii=False) + "\n\n" return chat = ChatDialog() session = await add_session_log(db, session_id, question, chat_id, user_id, mode, session_id, RG_TYPE) if session: conversation_id = session.conversation_id message = {"role": "assistant", "answer": "", "reference": {}} try: async for ans in chat.chat_completions(url, await chat.complex_request_data(question, kb_id, conversation_id), await chat.get_headers(token)): data = {} error = "" status = http_200 if ans.get("code", None) == 102: error = ans.get("message", "error!") status = http_400 event = smart_message_error else: if isinstance(ans.get("data"), bool) and ans.get("data") is True: event = smart_message_end else: data = ans.get("data", {}) # conversation_id = data.get("session_id", "") if "session_id" in data: del data["session_id"] message = data event = smart_message_cover message_str = "data: " + json.dumps( {"event": event, "data": data, "error": error, "status": status, "session_id": session_id}, ensure_ascii=False) + "\n\n" for i in range(0, len(message_str), max_chunk_size): chunk = message_str[i:i + max_chunk_size] # print(chunk) yield chunk # 发送分块消息 except Exception as e: logger.error(e) try: yield "data: " + json.dumps({"message": smart_message_error, "error": "\n**ERROR**: " + str(e), "status": http_500}, ensure_ascii=False) + "\n\n" except: ... finally: message["role"] = "assistant" await update_session_log(db, session_id, message, conversation_id) async def data_process(data): if isinstance(data, str): return data.replace("dify", "smart") elif isinstance(data, dict): for k in list(data.keys()): if isinstance(k, str) and "dify" in k: new_k = k.replace("dify", "smart") data[new_k] = await data_process(data[k]) del data[k] else: data[k] = await data_process(data[k]) return data elif isinstance(data, list): for i in range(len(data)): data[i] = await data_process(data[i]) return data else: return data async def service_chat_workflow(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str): conversation_id = "" answer_event = "" answer_agent = "" answer_workflow = "" download_url = "" message_id = "" task_id = "" error = "" files = [] node_list = [] token = await get_chat_token(db, chat_id) chat, url = await get_chat_object(mode) if hasattr(chat_data, "query"): query = chat_data.query else: query = "start new conversation" session = await add_session_log(db, session_id, query if query else "start new conversation", chat_id, user_id, mode, conversation_id, DF_TYPE, chat_data.to_dict()) if session: conversation_id = session.conversation_id try: async for ans in chat.chat_completions(url, await chat.request_data(query, conversation_id, str(user_id), chat_data), await chat.get_headers(token)): data = {} status = http_200 conversation_id = ans.get("conversation_id") task_id = ans.get("task_id") if ans.get("event") == message_error: error = ans.get("message", "参数异常!") status = http_400 event = smart_message_error elif ans.get("event") == message_agent: data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} answer_agent += ans.get("answer", "") message_id = ans.get("message_id", "") event = smart_message_stream elif ans.get("event") == message_event: data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} answer_event += ans.get("answer", "") message_id = ans.get("message_id", "") event = smart_message_stream elif ans.get("event") == message_file: data = {"url": ans.get("url", ""), "id": ans.get("id", ""), "type": ans.get("type", "")} files.append(data) event = smart_message_file elif ans.get("event") in [workflow_started, node_started, node_finished]: data = ans.get("data", {}) data["inputs"] = await data_process(data.get("inputs", {})) data["outputs"] = await data_process(data.get("outputs", {})) data["files"] = await data_process(data.get("files", [])) data["process_data"] = "" if data.get("status") == "failed": status = http_500 error = data.get("error", "") node_list.append(ans) event = [smart_workflow_started, smart_node_started, smart_node_finished][ [workflow_started, node_started, node_finished].index(ans.get("event"))] elif ans.get("event") == workflow_finished: data = ans.get("data", {}) answer_workflow = data.get("outputs", {}).get("output", data.get("outputs", {}).get("answer")) download_url = data.get("outputs", {}).get("download_url") event = smart_workflow_finished if data.get("status") == "failed": status = http_500 error = data.get("error", "") node_list.append(ans) elif ans.get("event") == message_end: event = smart_message_end else: continue yield "data: " + json.dumps( {"event": event, "data": data, "error": error, "status": status, "task_id": task_id, "session_id": session_id}, ensure_ascii=False) + "\n\n" except Exception as e: logger.error(e) try: yield "data: " + json.dumps({"message": smart_message_error, "error": "\n**ERROR**: " + str(e), "status": http_500}, ensure_ascii=False) + "\n\n" except: ... finally: await update_session_log(db, session_id, {"role": "assistant", "answer": answer_event or answer_agent or answer_workflow or error, "download_url": download_url, "node_list": node_list, "task_id": task_id, "id": message_id, "error": error}, conversation_id) async def service_chat_basic(db, chat_id: str, chat_data: ChatData, session_id: str, user_id, mode: str): if chat_id == basic_report_talk: complex_chat = await ComplexChatDao(db).get_complex_chat_by_mode(chat_data.report_mode) if complex_chat: ... async def service_chat_parameters(db, chat_id, user_id): chat_info = db.query(DialogModel).filter_by(id=chat_id).first() if not chat_info: return {} return chat_info.parameters async def service_chat_sessions(db, chat_id, name): token = await get_chat_token(db, rg_api_token) # print(token) if not token: return {} url = settings.fwr_base_url + RG_CHAT_SESSIONS.format(chat_id) chat = ChatDialog() return await chat.chat_sessions(url, {"name": name}, await chat.get_headers(token)) async def service_chat_sessions_list(db, chat_id, current, page_size, user_id, keyword): total, session_list = await ChatSessionDao(db).get_session_list( user_id=user_id, agent_id=chat_id, keyword=keyword, page=current, page_size=page_size ) return json.dumps({"total": total, "rows": [session.to_dict() for session in session_list]}) async def service_chat_session_log(db, session_id): session_log = await ChatSessionDao(db).get_session_by_id(session_id) if not session_log: return {} log_info = session_log.log_to_json() if session_log.event_type == complex_chat: total, message_list = await ComplexChatSessionDao(db).get_session_list(session_id) log_info["message"] = [message.log_to_json() for message in message_list[::-1]] return json.dumps(log_info) async def service_chat_upload(db, chat_id, file, user_id): files = [] token = await get_chat_token(db, chat_id) if not token: return files url = settings.dify_base_url + DF_UPLOAD_FILE chat = ChatBaseApply() for f in file: try: file_content = await f.read() file_upload = await chat.chat_upload(url, {"file": (f.filename, file_content)}, {"user": str(user_id)}, {'Authorization': f'Bearer {token}'}) try: tokens = await read_file(file_content, f.filename, f.content_type) file_upload["tokens"] = tokens except: ... files.append(file_upload) except Exception as e: logger.error(e) return json.dumps(files) if files else "" async def get_str_token(input_str): # 获取tokenizer对象,目前只支持通义千问系列模型 tokenizer = get_tokenizer('qwen-turbo') # 将字符串切分成token并转换为token id tokens = tokenizer.encode(input_str) return len(tokens) async def read_pdf(pdf_stream): text = "" with fitz.open(stream=pdf_stream, filetype="pdf") as pdf_document: for page in pdf_document: text += page.get_text() return text async def read_word(word_stream): # 使用 python-docx 打开 Word 文件流 doc = Document(io.BytesIO(word_stream)) # 提取每个段落的文本 text = "" for para in doc.paragraphs: text += para.text return text async def read_file(file, filename, content_type): text = "" if content_type == "application/pdf" or filename.endswith('.pdf'): # 提取 PDF 内容 text = await read_pdf(file) elif content_type == "application/vnd.openxmlformats-officedocument.wordprocessingml.document" or filename.endswith( '.docx'): text = await read_word(file) return await get_str_token(text) async def service_chunk_retrieval(query, knowledge_id, top_k, similarity_threshold, api_key): # print(query) try: request_data = json.loads(query) payload = { "question": request_data.get("query", ""), "dataset_ids": request_data.get("dataset_ids", []), "page_size": top_k, "similarity_threshold": similarity_threshold if similarity_threshold else 0.2 } except json.JSONDecodeError as e: fixed_json = query.replace("'", '"') try: request_data = json.loads(fixed_json) payload = { "question": request_data.get("query", ""), "dataset_ids": request_data.get("dataset_ids", []), "page_size": top_k, "similarity_threshold": similarity_threshold if similarity_threshold else 0.2 } except Exception: payload = { "question": query, "dataset_ids": [knowledge_id], "page_size": top_k, "similarity_threshold": similarity_threshold if similarity_threshold else 0.2 } # print(payload) url = settings.fwr_base_url + RG_ORIGINAL_URL chat = ChatBaseApply() response = await chat.chat_post(url, payload, await chat.get_headers(api_key)) if not response: raise HTTPException(status_code=500, detail="服务异常!") records = [ { "content": chunk["content"], "score": chunk["similarity"], "title": chunk.get("document_keyword", "Unknown Document"), "metadata": {"document_id": chunk["document_id"], "path": f"{settings.fwr_base_url}/document/{chunk['document_id']}?ext={chunk.get('document_keyword').split('.')[-1]}&prefix=document", 'highlight': chunk.get("highlight"), "image_id": chunk.get("image_id"), "positions": chunk.get("positions"), } } for chunk in response.get("data", {}).get("chunks", []) ] # print(len(records)) # print(records) return records async def service_base_chunk_retrieval(query, knowledge_id, top_k, similarity_threshold, api_key): # request_data = json.loads(query) payload = { "question": query, "dataset_ids": [knowledge_id], "page_size": top_k, "similarity_threshold": similarity_threshold } url = settings.fwr_base_url + RG_ORIGINAL_URL # url = "http://192.168.20.116:11080/" + RG_ORIGINAL_URL chat = ChatBaseApply() response = await chat.chat_post(url, payload, await chat.get_headers(api_key)) if not response: raise HTTPException(status_code=500, detail="服务异常!") records = [ { "content": chunk["content"], "score": chunk["similarity"], "title": chunk.get("document_keyword", "Unknown Document"), "metadata": {"document_id": chunk["document_id"]} } for chunk in response.get("data", {}).get("chunks", []) ] return records async def add_complex_log(db, message_id, chat_id, session_id, chat_mode, query, user_id, mode, agent_type, message_type, conversation_id="", node_data=None, query_data=None): if not node_data: node_data = [] if not query_data: query_data = {} # print(node_data) # print("--------------------------------------------------------") # print(query_data) try: complex_log = ComplexChatSessionDao(db) if not conversation_id: session = await complex_log.get_session_by_session_id(session_id, chat_id) if session: conversation_id = session.conversation_id await complex_log.create_session(message_id, chat_id=chat_id, session_id=session_id, chat_mode=chat_mode, message_type=message_type, content=query, event_type=mode, tenant_id=user_id, conversation_id=conversation_id, node_data=json.dumps(node_data), query=json.dumps(query_data), agent_type=agent_type) return conversation_id, True except Exception as e: logger.error(e) return conversation_id, False async def add_query_files(db, message_id): query = {} complex_log = await ComplexChatSessionDao(db).get_session_by_id(message_id) if complex_log: query = json.loads(complex_log.query) return query.get("files", []) async def service_complex_chat(db, chat_id, mode, user_id, chat_request: ChatDataRequest): answer_event = "" answer_agent = "" answer_dialog = "" answer_workflow = "" download_url = "" message_id = "" task_id = "" error = "" node_list = [] reference = {} conversation_id = "" query_data = chat_request.to_dict() new_message_id = str(uuid.uuid4()) inputs = {"is_deep": chat_request.isDeep} files = chat_request.files if chat_request.chatMode == complex_content_optimization_chat: inputs["type"] = chat_request.optimizeType elif chat_request.chatMode == complex_dialog_chat: if not files and chat_request.parentId: files = await add_query_files(db, chat_request.parentId) if chat_request.chatMode != complex_content_optimization_chat: await add_session_log(db, chat_request.sessionId, chat_request.query if chat_request.query else "未命名会话", chat_id, user_id, mode, "", DF_TYPE) conversation_id, message = await add_complex_log(db, new_message_id, chat_id, chat_request.sessionId, chat_request.chatMode, chat_request.query, user_id, mode, DF_TYPE, 1, query_data=query_data) if not message: yield "data: " + json.dumps({"message": smart_message_error, "error": "\n**ERROR**: 创建会话失败!", "status": http_500}, ensure_ascii=False) + "\n\n" return query_data["parentId"] = new_message_id try: if chat_request.chatMode == complex_knowledge_chat or chat_request.chatMode == complex_knowledge_chat_deep: if not conversation_id: session = await service_chat_sessions(db, chat_id, chat_request.query) # print(session) if not session or session.get("code") != 0: yield "data: " + json.dumps( {"message": smart_message_error, "error": "\n**ERROR**: chat agent error", "status": http_500}) return conversation_id = session.get("data", {}).get("id") token = await get_chat_token(db, rg_api_token) url = settings.fwr_base_url + RG_CHAT_DIALOG.format(chat_id) chat = ChatDialog() try: async for ans in chat.chat_completions(url, await chat.complex_request_data(chat_request.query, chat_request.knowledgeId, conversation_id), await chat.get_headers(token)): data = {} error = "" status = http_200 if ans.get("code", None) == 102: error = ans.get("message", "error!") status = http_400 event = smart_message_error else: if isinstance(ans.get("data"), bool) and ans.get("data") is True: event = smart_message_end else: data = ans.get("data", {}) # conversation_id = data.get("session_id", "") if "session_id" in data: del data["session_id"] data["prompt"] = "" if not message_id: message_id = data.get("id", "") answer_dialog = data.get("answer", "") reference = data.get("reference", {}) event = smart_message_cover message_str = "data: " + json.dumps( {"event": event, "data": data, "error": error, "status": status, "message_id": message_id, "parent_id": new_message_id, "session_id": chat_request.sessionId}, ensure_ascii=False) + "\n\n" for i in range(0, len(message_str), max_chunk_size): chunk = message_str[i:i + max_chunk_size] # print(chunk) yield chunk # 发送分块消息 except Exception as e: logger.error(e) try: yield "data: " + json.dumps({"message": smart_message_error, "error": "\n**ERROR**: " + str(e), "status": http_500}, ensure_ascii=False) + "\n\n" except: ... else: token = await get_chat_token(db, chat_id) chat, url = await get_chat_object(mode) async for ans in chat.chat_completions(url, await chat.complex_request_data(chat_request.query, conversation_id, str(user_id), files=files, inputs=inputs), await chat.get_headers(token)): # print(ans) data = {} status = http_200 conversation_id = ans.get("conversation_id") task_id = ans.get("task_id") if ans.get("event") == message_error: error = ans.get("message", "参数异常!") status = http_400 event = smart_message_error elif ans.get("event") == message_agent: data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} answer_agent += ans.get("answer", "") message_id = ans.get("message_id", "") event = smart_message_stream elif ans.get("event") == message_event: data = {"answer": ans.get("answer", ""), "id": ans.get("message_id", "")} answer_event += ans.get("answer", "") message_id = ans.get("message_id", "") event = smart_message_stream elif ans.get("event") == message_file: data = {"url": ans.get("url", ""), "id": ans.get("id", ""), "type": ans.get("type", "")} files.append(data) event = smart_message_file elif ans.get("event") in [workflow_started, node_started, node_finished]: data = ans.get("data", {}) data["inputs"] = await data_process(data.get("inputs", {})) data["outputs"] = await data_process(data.get("outputs", {})) data["files"] = await data_process(data.get("files", [])) data["process_data"] = "" if data.get("status") == "failed": status = http_500 error = data.get("error", "") node_list.append(ans) event = [smart_workflow_started, smart_node_started, smart_node_finished][ [workflow_started, node_started, node_finished].index(ans.get("event"))] elif ans.get("event") == workflow_finished: data = ans.get("data", {}) answer_workflow = data.get("outputs", {}).get("output", data.get("outputs", {}).get("answer")) download_url = data.get("outputs", {}).get("download_url") event = smart_workflow_finished if data.get("status") == "failed": status = http_500 error = data.get("error", "") node_list.append(ans) elif ans.get("event") == message_end: event = smart_message_end else: continue yield "data: " + json.dumps( {"event": event, "data": data, "error": error, "status": status, "task_id": task_id, "message_id": message_id, "parent_id": new_message_id, "session_id": chat_request.sessionId}, ensure_ascii=False) + "\n\n" except Exception as e: logger.error(e) try: yield "data: " + json.dumps({"message": smart_message_error, "error": "\n**ERROR**: " + str(e), "status": http_500}, ensure_ascii=False) + "\n\n" except: ... finally: # await update_session_log(db, session_id, {"role": "assistant", # "answer": answer_event or answer_agent or answer_workflow or error, # "download_url": download_url, # "node_list": node_list, "task_id": task_id, "id": message_id, # "error": error}, conversation_id) if message_id: await add_complex_log(db, message_id, chat_id, chat_request.sessionId, chat_request.chatMode, answer_event or answer_agent or answer_workflow or answer_dialog or error, user_id, mode, DF_TYPE, 2, conversation_id, node_data=node_list or reference, query_data=query_data) async def service_complex_upload(db, chat_id, file, user_id): files = [] token = await get_chat_token(db, chat_id) if not token: return files url = settings.dify_base_url + DF_UPLOAD_FILE chat = ChatBaseApply() for f in file: try: file_content = await f.read() file_upload = await chat.chat_upload(url, {"file": (f.filename, file_content)}, {"user": str(user_id)}, {'Authorization': f'Bearer {token}'}) # try: # tokens = await read_file(file_content, f.filename, f.content_type) # file_upload["tokens"] = tokens # except: # ... files.append(file_upload) except Exception as e: logger.error(e) return json.dumps(files) if files else "" async def service_complex_model(db, chat_type, model_type, model_name, model_provider): if chat_type == 1 and model_type == 1: return await set_dialog_model(db, complex_knowledge_chat, model_name,model_provider) elif chat_type == 1 and model_type == 2: return await set_dialog_model(db, complex_knowledge_chat_deep, model_name, model_provider) else: if model_type == 1: chats = [complex_dialog_chat, complex_network_chat, complex_mindmap_chat, complex_content_optimization_chat] else: chats = [complex_dialog_chat, complex_network_chat] return await set_workflow_model(db,chats , # , complex_network_chat, complex_mindmap_chat, complex_content_optimization_chat model_type, model_name, model_provider) async def set_dialog_model(db, chat_mode, model_name, model_provider): chat = await ComplexChatDao(db).get_complex_chat_by_mode(chat_mode) if chat: access_token = await get_chat_token(db, rg_api_token) url = settings.fwr_base_url + RG_CHAT_UPDATE_URL.format(chat.id) chat_base = ChatBaseApply() payload = { "name": chat.name, "llm": { "model_name": model_name } } response = await chat_base.chat_put(url, payload, await chat_base.get_headers(access_token)) # print(response) if not response: return "服务异常,修改失败!" await ComplexChatDao(db).update_complex_chat_by_id(chat.id, {"chat_model": model_name, "chat_model_ds": model_name, "chat_provider": model_provider, "update_date": datetime.datetime.now()}) return "" async def set_workflow_model(db, chat_modes, model_type, model_name, model_provider): chat_base = ChatBaseApply() token = await get_workflow_token(db) for chat_mode in chat_modes: chat = await ComplexChatDao(db).get_complex_chat_by_mode(chat_mode) if chat: get_draft_url = settings.dify_base_url + DF_WORKFLOW_DRAFT.format(chat.id) draft_data = await chat_base.chat_get(get_draft_url, {}, await chat_base.get_headers(token)) if draft_data: graph = draft_data.get("graph") for node in graph.get("nodes"): if node.get("data", {}).get("type") == "llm": if model_type == 1 and "深度搜索" not in node.get("data", {}).get("title"): node["data"]["model"]["name"] = model_name node["data"]["model"]["provider"] = model_provider elif model_type == 2 and "深度搜索" in node.get("data", {}).get("title"): node["data"]["model"]["name"] = model_name node["data"]["model"]["provider"] = model_provider draft_data_query = {"conversation_variables": draft_data.get("conversation_variables"), "environment_variables": draft_data.get("environment_variables"), "hash": draft_data.get("hash"), "features": draft_data.get("features"), "graph": graph} set_draft_data = await chat_base.chat_post(get_draft_url, draft_data_query, await chat_base.get_headers(token)) if set_draft_data and set_draft_data.get("result") == "success": publish_url = settings.dify_base_url + DF_WORKFLOW_PUBLISH.format(chat.id) publish_data = await chat_base.chat_post(publish_url, {}, await chat_base.get_headers(token)) if publish_data and publish_data.get("result") == "success": update_kwargs = {"chat_provider": model_provider, "update_date": datetime.datetime.now()} if model_type == 1: update_kwargs["chat_model"] = model_name else: update_kwargs["chat_model_ds"] = model_name await ComplexChatDao(db).update_complex_chat_by_id(chat.id, update_kwargs) async def service_get_complex_model(db): res = {} for complexs in await ComplexChatDao(db).aget_complex_chat(): if complexs.chat_mode == complex_knowledge_chat: res["dialog"] = {"modelName": complexs.chat_model, "modelProvider": complexs.chat_provider} elif complexs.chat_mode == complex_knowledge_chat_deep: res["dialog_ds"] = {"modelName": complexs.chat_model_ds, "modelProvider": complexs.chat_provider} else: res["workflow"] = {"modelName": complexs.chat_model, "modelProvider": complexs.chat_provider} res["workflow_ds"] = {"modelName": complexs.chat_model_ds, "modelProvider": complexs.chat_provider} return json.dumps(res) if __name__ == "__main__": q = json.dumps({"query": "设备", "dataset_ids": ["fc68db52f43111efb94a0242ac120004"]}) top_k = 2 similarity_threshold = 0.5 api_key = "ragflow-Y4MGYwY2JlZjM2YjExZWY4ZWU5MDI0Mm" # a = service_chunk_retrieval(q, top_k, similarity_threshold, api_key) # print(a) async def a(): b = await service_chunk_retrieval(q, top_k, similarity_threshold, api_key) print(b) asyncio.run(a())