//======================================================================= // Copyright 1997, 1998, 1999, 2000 University of Notre Dame. // Authors: Andrew Lumsdaine, Lie-Quan Lee, Jeremy G. Siek // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) //======================================================================= #ifndef BOOST_FILTERED_GRAPH_HPP #define BOOST_FILTERED_GRAPH_HPP #include #include #include #include #include namespace boost { //========================================================================= // Some predicate classes. struct keep_all { template < typename T > bool operator()(const T&) const { return true; } }; // Keep residual edges (used in maximum-flow algorithms). template < typename ResidualCapacityEdgeMap > struct is_residual_edge { is_residual_edge() {} is_residual_edge(ResidualCapacityEdgeMap rcap) : m_rcap(rcap) {} template < typename Edge > bool operator()(const Edge& e) const { return 0 < get(m_rcap, e); } ResidualCapacityEdgeMap m_rcap; }; template < typename Set > struct is_in_subset { is_in_subset() : m_s(0) {} is_in_subset(const Set& s) : m_s(&s) {} template < typename Elt > bool operator()(const Elt& x) const { return set_contains(*m_s, x); } const Set* m_s; }; template < typename Set > struct is_not_in_subset { is_not_in_subset() : m_s(0) {} is_not_in_subset(const Set& s) : m_s(&s) {} template < typename Elt > bool operator()(const Elt& x) const { return !set_contains(*m_s, x); } const Set* m_s; }; namespace detail { template < typename EdgePredicate, typename VertexPredicate, typename Graph > struct out_edge_predicate { out_edge_predicate() {} out_edge_predicate(EdgePredicate ep, VertexPredicate vp, const Graph& g) : m_edge_pred(ep), m_vertex_pred(vp), m_g(&g) { } template < typename Edge > bool operator()(const Edge& e) const { return m_edge_pred(e) && m_vertex_pred(target(e, *m_g)); } EdgePredicate m_edge_pred; VertexPredicate m_vertex_pred; const Graph* m_g; }; template < typename EdgePredicate, typename VertexPredicate, typename Graph > struct in_edge_predicate { in_edge_predicate() {} in_edge_predicate(EdgePredicate ep, VertexPredicate vp, const Graph& g) : m_edge_pred(ep), m_vertex_pred(vp), m_g(&g) { } template < typename Edge > bool operator()(const Edge& e) const { return m_edge_pred(e) && m_vertex_pred(source(e, *m_g)); } EdgePredicate m_edge_pred; VertexPredicate m_vertex_pred; const Graph* m_g; }; template < typename EdgePredicate, typename VertexPredicate, typename Graph > struct edge_predicate { edge_predicate() {} edge_predicate(EdgePredicate ep, VertexPredicate vp, const Graph& g) : m_edge_pred(ep), m_vertex_pred(vp), m_g(&g) { } template < typename Edge > bool operator()(const Edge& e) const { return m_edge_pred(e) && m_vertex_pred(source(e, *m_g)) && m_vertex_pred(target(e, *m_g)); } EdgePredicate m_edge_pred; VertexPredicate m_vertex_pred; const Graph* m_g; }; } // namespace detail //=========================================================================== // Filtered Graph struct filtered_graph_tag { }; // This base class is a stupid hack to change overload resolution // rules for the source and target functions so that they are a // worse match than the source and target functions defined for // pairs in graph_traits.hpp. I feel dirty. -JGS template < class G > struct filtered_graph_base { typedef graph_traits< G > Traits; typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename Traits::edge_descriptor edge_descriptor; filtered_graph_base(const G& g) : m_g(g) {} // protected: const G& m_g; }; template < typename Graph, typename EdgePredicate, typename VertexPredicate = keep_all > class filtered_graph : public filtered_graph_base< Graph > { typedef filtered_graph_base< Graph > Base; typedef graph_traits< Graph > Traits; typedef filtered_graph self; public: typedef Graph graph_type; typedef detail::out_edge_predicate< EdgePredicate, VertexPredicate, self > OutEdgePred; typedef detail::in_edge_predicate< EdgePredicate, VertexPredicate, self > InEdgePred; typedef detail::edge_predicate< EdgePredicate, VertexPredicate, self > EdgePred; // Constructors filtered_graph(const Graph& g, EdgePredicate ep) : Base(g), m_edge_pred(ep) { } filtered_graph(const Graph& g, EdgePredicate ep, VertexPredicate vp) : Base(g), m_edge_pred(ep), m_vertex_pred(vp) { } // Graph requirements typedef typename Traits::vertex_descriptor vertex_descriptor; typedef typename Traits::edge_descriptor edge_descriptor; typedef typename Traits::directed_category directed_category; typedef typename Traits::edge_parallel_category edge_parallel_category; typedef typename Traits::traversal_category traversal_category; // IncidenceGraph requirements typedef filter_iterator< OutEdgePred, typename Traits::out_edge_iterator > out_edge_iterator; typedef typename Traits::degree_size_type degree_size_type; // AdjacencyGraph requirements typedef typename adjacency_iterator_generator< self, vertex_descriptor, out_edge_iterator >::type adjacency_iterator; // BidirectionalGraph requirements typedef filter_iterator< InEdgePred, typename Traits::in_edge_iterator > in_edge_iterator; // VertexListGraph requirements typedef filter_iterator< VertexPredicate, typename Traits::vertex_iterator > vertex_iterator; typedef typename Traits::vertices_size_type vertices_size_type; // EdgeListGraph requirements typedef filter_iterator< EdgePred, typename Traits::edge_iterator > edge_iterator; typedef typename Traits::edges_size_type edges_size_type; typedef filtered_graph_tag graph_tag; // Bundled properties support template < typename Descriptor > typename graph::detail::bundled_result< Graph, Descriptor >::type& operator[](Descriptor x) { return const_cast< Graph& >(this->m_g)[x]; } template < typename Descriptor > typename graph::detail::bundled_result< Graph, Descriptor >::type const& operator[](Descriptor x) const { return this->m_g[x]; } static vertex_descriptor null_vertex() { return Traits::null_vertex(); } // private: EdgePredicate m_edge_pred; VertexPredicate m_vertex_pred; }; // Do not instantiate these unless needed template < typename Graph, typename EdgePredicate, typename VertexPredicate > struct vertex_property_type< filtered_graph< Graph, EdgePredicate, VertexPredicate > > : vertex_property_type< Graph > { }; template < typename Graph, typename EdgePredicate, typename VertexPredicate > struct edge_property_type< filtered_graph< Graph, EdgePredicate, VertexPredicate > > : edge_property_type< Graph > { }; template < typename Graph, typename EdgePredicate, typename VertexPredicate > struct graph_property_type< filtered_graph< Graph, EdgePredicate, VertexPredicate > > : graph_property_type< Graph > { }; template < typename Graph, typename EdgePredicate, typename VertexPredicate > struct vertex_bundle_type< filtered_graph< Graph, EdgePredicate, VertexPredicate > > : vertex_bundle_type< Graph > { }; template < typename Graph, typename EdgePredicate, typename VertexPredicate > struct edge_bundle_type< filtered_graph< Graph, EdgePredicate, VertexPredicate > > : edge_bundle_type< Graph > { }; template < typename Graph, typename EdgePredicate, typename VertexPredicate > struct graph_bundle_type< filtered_graph< Graph, EdgePredicate, VertexPredicate > > : graph_bundle_type< Graph > { }; //=========================================================================== // Non-member functions for the Filtered Edge Graph // Helper functions template < typename Graph, typename EdgePredicate > inline filtered_graph< Graph, EdgePredicate > make_filtered_graph( Graph& g, EdgePredicate ep) { return filtered_graph< Graph, EdgePredicate >(g, ep); } template < typename Graph, typename EdgePredicate, typename VertexPredicate > inline filtered_graph< Graph, EdgePredicate, VertexPredicate > make_filtered_graph(Graph& g, EdgePredicate ep, VertexPredicate vp) { return filtered_graph< Graph, EdgePredicate, VertexPredicate >(g, ep, vp); } template < typename Graph, typename EdgePredicate > inline filtered_graph< const Graph, EdgePredicate > make_filtered_graph( const Graph& g, EdgePredicate ep) { return filtered_graph< const Graph, EdgePredicate >(g, ep); } template < typename Graph, typename EdgePredicate, typename VertexPredicate > inline filtered_graph< const Graph, EdgePredicate, VertexPredicate > make_filtered_graph(const Graph& g, EdgePredicate ep, VertexPredicate vp) { return filtered_graph< const Graph, EdgePredicate, VertexPredicate >( g, ep, vp); } template < typename G, typename EP, typename VP > std::pair< typename filtered_graph< G, EP, VP >::vertex_iterator, typename filtered_graph< G, EP, VP >::vertex_iterator > vertices(const filtered_graph< G, EP, VP >& g) { typedef filtered_graph< G, EP, VP > Graph; typename graph_traits< G >::vertex_iterator f, l; boost::tie(f, l) = vertices(g.m_g); typedef typename Graph::vertex_iterator iter; return std::make_pair( iter(g.m_vertex_pred, f, l), iter(g.m_vertex_pred, l, l)); } template < typename G, typename EP, typename VP > std::pair< typename filtered_graph< G, EP, VP >::edge_iterator, typename filtered_graph< G, EP, VP >::edge_iterator > edges(const filtered_graph< G, EP, VP >& g) { typedef filtered_graph< G, EP, VP > Graph; typename Graph::EdgePred pred(g.m_edge_pred, g.m_vertex_pred, g); typename graph_traits< G >::edge_iterator f, l; boost::tie(f, l) = edges(g.m_g); typedef typename Graph::edge_iterator iter; return std::make_pair(iter(pred, f, l), iter(pred, l, l)); } // An alternative for num_vertices() and num_edges() would be to // count the number in the filtered graph. This is problematic // because of the interaction with the vertex indices... they would // no longer go from 0 to num_vertices(), which would cause trouble // for algorithms allocating property storage in an array. We could // try to create a mapping to new recalibrated indices, but I don't // see an efficient way to do this. // // However, the current solution is still unsatisfactory because // the following semantic constraints no longer hold: // boost::tie(vi, viend) = vertices(g); // assert(std::distance(vi, viend) == num_vertices(g)); template < typename G, typename EP, typename VP > typename filtered_graph< G, EP, VP >::vertices_size_type num_vertices( const filtered_graph< G, EP, VP >& g) { return num_vertices(g.m_g); } template < typename G, typename EP, typename VP > typename filtered_graph< G, EP, VP >::edges_size_type num_edges( const filtered_graph< G, EP, VP >& g) { return num_edges(g.m_g); } template < typename G > typename filtered_graph_base< G >::vertex_descriptor source( typename filtered_graph_base< G >::edge_descriptor e, const filtered_graph_base< G >& g) { return source(e, g.m_g); } template < typename G > typename filtered_graph_base< G >::vertex_descriptor target( typename filtered_graph_base< G >::edge_descriptor e, const filtered_graph_base< G >& g) { return target(e, g.m_g); } template < typename G, typename EP, typename VP > std::pair< typename filtered_graph< G, EP, VP >::out_edge_iterator, typename filtered_graph< G, EP, VP >::out_edge_iterator > out_edges(typename filtered_graph< G, EP, VP >::vertex_descriptor u, const filtered_graph< G, EP, VP >& g) { typedef filtered_graph< G, EP, VP > Graph; typename Graph::OutEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g); typedef typename Graph::out_edge_iterator iter; typename graph_traits< G >::out_edge_iterator f, l; boost::tie(f, l) = out_edges(u, g.m_g); return std::make_pair(iter(pred, f, l), iter(pred, l, l)); } template < typename G, typename EP, typename VP > typename filtered_graph< G, EP, VP >::degree_size_type out_degree( typename filtered_graph< G, EP, VP >::vertex_descriptor u, const filtered_graph< G, EP, VP >& g) { typename filtered_graph< G, EP, VP >::degree_size_type n = 0; typename filtered_graph< G, EP, VP >::out_edge_iterator f, l; for (boost::tie(f, l) = out_edges(u, g); f != l; ++f) ++n; return n; } template < typename G, typename EP, typename VP > std::pair< typename filtered_graph< G, EP, VP >::adjacency_iterator, typename filtered_graph< G, EP, VP >::adjacency_iterator > adjacent_vertices(typename filtered_graph< G, EP, VP >::vertex_descriptor u, const filtered_graph< G, EP, VP >& g) { typedef filtered_graph< G, EP, VP > Graph; typedef typename Graph::adjacency_iterator adjacency_iterator; typename Graph::out_edge_iterator f, l; boost::tie(f, l) = out_edges(u, g); return std::make_pair(adjacency_iterator(f, const_cast< Graph* >(&g)), adjacency_iterator(l, const_cast< Graph* >(&g))); } template < typename G, typename EP, typename VP > std::pair< typename filtered_graph< G, EP, VP >::in_edge_iterator, typename filtered_graph< G, EP, VP >::in_edge_iterator > in_edges(typename filtered_graph< G, EP, VP >::vertex_descriptor u, const filtered_graph< G, EP, VP >& g) { typedef filtered_graph< G, EP, VP > Graph; typename Graph::InEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g); typedef typename Graph::in_edge_iterator iter; typename graph_traits< G >::in_edge_iterator f, l; boost::tie(f, l) = in_edges(u, g.m_g); return std::make_pair(iter(pred, f, l), iter(pred, l, l)); } template < typename G, typename EP, typename VP > typename filtered_graph< G, EP, VP >::degree_size_type in_degree( typename filtered_graph< G, EP, VP >::vertex_descriptor u, const filtered_graph< G, EP, VP >& g) { typename filtered_graph< G, EP, VP >::degree_size_type n = 0; typename filtered_graph< G, EP, VP >::in_edge_iterator f, l; for (boost::tie(f, l) = in_edges(u, g); f != l; ++f) ++n; return n; } template < typename G, typename EP, typename VP > typename enable_if< typename is_directed_graph< G >::type, typename filtered_graph< G, EP, VP >::degree_size_type >::type degree(typename filtered_graph< G, EP, VP >::vertex_descriptor u, const filtered_graph< G, EP, VP >& g) { return out_degree(u, g) + in_degree(u, g); } template < typename G, typename EP, typename VP > typename disable_if< typename is_directed_graph< G >::type, typename filtered_graph< G, EP, VP >::degree_size_type >::type degree(typename filtered_graph< G, EP, VP >::vertex_descriptor u, const filtered_graph< G, EP, VP >& g) { return out_degree(u, g); } template < typename G, typename EP, typename VP > std::pair< typename filtered_graph< G, EP, VP >::edge_descriptor, bool > edge( typename filtered_graph< G, EP, VP >::vertex_descriptor u, typename filtered_graph< G, EP, VP >::vertex_descriptor v, const filtered_graph< G, EP, VP >& g) { typename graph_traits< G >::edge_descriptor e; bool exists; boost::tie(e, exists) = edge(u, v, g.m_g); return std::make_pair(e, exists && g.m_edge_pred(e)); } template < typename G, typename EP, typename VP > std::pair< typename filtered_graph< G, EP, VP >::out_edge_iterator, typename filtered_graph< G, EP, VP >::out_edge_iterator > edge_range(typename filtered_graph< G, EP, VP >::vertex_descriptor u, typename filtered_graph< G, EP, VP >::vertex_descriptor v, const filtered_graph< G, EP, VP >& g) { typedef filtered_graph< G, EP, VP > Graph; typename Graph::OutEdgePred pred(g.m_edge_pred, g.m_vertex_pred, g); typedef typename Graph::out_edge_iterator iter; typename graph_traits< G >::out_edge_iterator f, l; boost::tie(f, l) = edge_range(u, v, g.m_g); return std::make_pair(iter(pred, f, l), iter(pred, l, l)); } //=========================================================================== // Property map template < typename G, typename EP, typename VP, typename Property > struct property_map< filtered_graph< G, EP, VP >, Property > : property_map< G, Property > { }; template < typename G, typename EP, typename VP, typename Property > typename property_map< G, Property >::type get( Property p, filtered_graph< G, EP, VP >& g) { return get(p, const_cast< G& >(g.m_g)); } template < typename G, typename EP, typename VP, typename Property > typename property_map< G, Property >::const_type get( Property p, const filtered_graph< G, EP, VP >& g) { return get(p, (const G&)g.m_g); } template < typename G, typename EP, typename VP, typename Property, typename Key > typename property_map_value< G, Property >::type get( Property p, const filtered_graph< G, EP, VP >& g, const Key& k) { return get(p, (const G&)g.m_g, k); } template < typename G, typename EP, typename VP, typename Property, typename Key, typename Value > void put(Property p, const filtered_graph< G, EP, VP >& g, const Key& k, const Value& val) { put(p, const_cast< G& >(g.m_g), k, val); } //=========================================================================== // Some filtered subgraph specializations template < typename Graph, typename Set > struct vertex_subset_filter { typedef filtered_graph< Graph, keep_all, is_in_subset< Set > > type; }; template < typename Graph, typename Set > inline typename vertex_subset_filter< Graph, Set >::type make_vertex_subset_filter(Graph& g, const Set& s) { typedef typename vertex_subset_filter< Graph, Set >::type Filter; is_in_subset< Set > p(s); return Filter(g, keep_all(), p); } // This is misspelled, but present for backwards compatibility; new code // should use the version below that has the correct spelling. template < typename Graph, typename Set > struct vertex_subset_compliment_filter { typedef filtered_graph< Graph, keep_all, is_not_in_subset< Set > > type; }; template < typename Graph, typename Set > inline typename vertex_subset_compliment_filter< Graph, Set >::type make_vertex_subset_compliment_filter(Graph& g, const Set& s) { typedef typename vertex_subset_compliment_filter< Graph, Set >::type Filter; is_not_in_subset< Set > p(s); return Filter(g, keep_all(), p); } template < typename Graph, typename Set > struct vertex_subset_complement_filter { typedef filtered_graph< Graph, keep_all, is_not_in_subset< Set > > type; }; template < typename Graph, typename Set > inline typename vertex_subset_complement_filter< Graph, Set >::type make_vertex_subset_complement_filter(Graph& g, const Set& s) { typedef typename vertex_subset_complement_filter< Graph, Set >::type Filter; is_not_in_subset< Set > p(s); return Filter(g, keep_all(), p); } // Filter that uses a property map whose value_type is a boolean template < typename PropertyMap > struct property_map_filter { property_map_filter() {} property_map_filter(const PropertyMap& property_map) : m_property_map(property_map) { } template < typename Key > bool operator()(const Key& key) const { return (get(m_property_map, key)); } private: PropertyMap m_property_map; }; } // namespace boost #endif // BOOST_FILTERED_GRAPH_HPP