#include "YoloDetectServerI.h" #include #include #include #include YoloDetectServerI::YoloDetectServerI():m_thresh(0.5),m_hier_thresh(0.5),m_nms(0.5),names(nullptr),alphabet(nullptr), m_thdInit(init,this),m_bInitThd(false) { } YoloDetectServerI::~YoloDetectServerI() {} ::YoloDetect::ObjInfos YoloDetectServerI::YoloDetect(::Ice::Int w, ::Ice::Int h, const ::std::string& shM, const ::Ice::Current&) { ClockTimer ct("YoloDetectServerI::YoloDetect"); ::YoloDetect::ObjInfos objInfos; if(!m_bInitThd) return objInfos; QSharedMemory shareMemory(QString(shM.c_str())); if(shareMemory.attach()){ int channel = 3; cv::Mat _mat = bufferToMat(w,h,channel,shareMemory.constData()); // double bttime=what_time_is_it_now(); image im = matToImg(_mat); // DBG("matToImg : "<w, m_net->h); layer l = m_net->layers[m_net->n-1]; float *X = sized.data; //attime=what_time_is_it_now();p-> network_predict(m_net, X); //printf("Predicted in %f seconds.\n", what_time_is_it_now()-attime); int nboxes = 0; detection *dets = get_network_boxes(m_net, im.w, im.h, m_thresh, m_hier_thresh, 0, 1, &nboxes); if (m_nms) do_nms_sort(dets, nboxes, l.classes, m_nms); // draw_detections(im, dets, nboxes, m_thresh, names, alphabet, l.classes); for(int i=0;i vec(80); memcpy(&vec[0],dets[i].prob,sizeof(float)*80); int type = -1; for(int j = 0; j < l.classes; ++j){ // if(j != 0){ // continue; // } if (dets[i].prob[j] > 0.0f){ if (type < 0) { type = j; objInfo.prob = dets[i].prob[j]; } else { } } else{ } } if(type >= 0){ // if(type != 0){ // continue; // } objInfo.type = type; objInfo.rcObj.left = (dets[i].bbox.x-dets[i].bbox.w/2.); objInfo.rcObj.top = (dets[i].bbox.y-dets[i].bbox.h/2.); objInfo.rcObj.right = (dets[i].bbox.x+dets[i].bbox.w/2.); objInfo.rcObj.bottom = (dets[i].bbox.y+dets[i].bbox.h/2.); objInfos.push_back(objInfo); } } free_detections(dets, nboxes); // show_image(im, "Video"); // cv::waitKey(10); free_image(im); free_image(sized); //printf("all time use %f seconds.\n", what_time_is_it_now()-bttime); } return objInfos; } int YoloDetectServerI::init(void* arg) { YoloDetectServerI* p = (YoloDetectServerI*)arg; p->m_thresh = appPref.getFloatData("thresh.detect"); cuda_set_device(appPref.getIntData("gpu.index")); char *datacfg = "cfg/coco.data"; char *cfgfile = "cfg/yolov3.cfg"; char *weightfile = "./yolov3.weights"; double loadtime = what_time_is_it_now(); list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", "data/names.list"); p->names = get_labels(name_list); p->alphabet = load_alphabet(); p->m_net = load_network(cfgfile, weightfile, 0); set_batch_network(p->m_net, 1); printf("load mod use %f seconds.\n", what_time_is_it_now()-loadtime); srand(2222222); p->m_bInitThd = true; return 0; } cv::Mat YoloDetectServerI::bufferToMat(const int w,const int h,const int channels,const void* buffer) { int nType = -1; switch(channels){case 1:{nType=CV_8UC1;break;}case 2:{nType=CV_8UC2;break;}case 3:{nType=CV_8UC3;break;}default:{nType=CV_8UC3;break;}} cv::Mat mat(h,w,nType,(void*)buffer); return mat; } image YoloDetectServerI::matToImg(cv::Mat& RefImg) { CV_Assert(RefImg.depth() == CV_8U); int h = RefImg.rows; int w = RefImg.cols; int channels = RefImg.channels(); image im = make_image(w, h, 3); int count = 0; switch(channels){ case 1:{ cv::MatIterator_ it, end; for (it = RefImg.begin(), end = RefImg.end(); it != end; ++it){ im.data[count] = im.data[w*h + count] = im.data[w*h*2 + count] = (float)(*it)/255.0; ++count; } break; } case 3:{ float* desData = im.data; uchar* srcData = RefImg.data; int size = w*h; int size2 = size*2; for(int i = 0;i>str){ retval.push_back(str); } return retval; }