#include #include "DnDetect.h" DnDetect::DnDetect::DnDetect(const int gpuIndex) : m_net(nullptr), m_thresh(0.5), m_hier_thresh(0.5), m_nms(0.45), names(nullptr), alphabet(nullptr), m_thdInit(init, this), m_bInitThd(false) { } DnDetect::DnDetect::~DnDetect() { } std::vector DnDetect::DnDetect::detect(cv::Mat &img) { std::lock_guard dataGuard(dataMtx); ClockTimer cl("DnDetect::DnDetect"); std::vector objInfos; if (!m_bInitThd) return objInfos; double bttime = what_time_is_it_now(); image im = matToImg(img); // DBG("matToImg : "<w, m_net->h); layer l = m_net->layers[m_net->n - 1]; float *X = sized.data; //attime=what_time_is_it_now();p-> network_predict(m_net, X); //printf("Predicted in %f seconds.\n", what_time_is_it_now()-attime); int nboxes = 0; detection *dets; { // std::lock_guard dataGuard(dataMtx); // dataMtx.lock(); dets = get_network_boxes(m_net, im.w, im.h, m_thresh, m_hier_thresh, 0, 1, &nboxes); if (nboxes > 100) { // dataMtx.unlock(); return objInfos; } if (m_nms) do_nms_sort(dets, nboxes, l.classes, m_nms); // dataMtx.unlock(); } // draw_detections(im, dets, nboxes, m_thresh, names, alphabet, l.classes); for (int i = 0; i < nboxes; i++) { YoloObjInfo objInfo; std::vector vec(80); memcpy(&vec[0], dets[i].prob, sizeof(float) * 80); int type = -1; for (int j = 0; j < l.classes; ++j) { //#todo new func in list out bool if (j != 0) { continue; } //#todo get score if (dets[i].prob[j] > 0.0f) { if (type < 0) { type = j; objInfo.prob = dets[i].prob[j]; } else { } } else { } } if (type >= 0) { // if(type != 0){ // continue; // } objInfo.type = type; objInfo.rcObj.left = (dets[i].bbox.x - dets[i].bbox.w / 2.); objInfo.rcObj.top = (dets[i].bbox.y - dets[i].bbox.h / 2.); objInfo.rcObj.right = (dets[i].bbox.x + dets[i].bbox.w / 2.); objInfo.rcObj.bottom = (dets[i].bbox.y + dets[i].bbox.h / 2.); objInfos.push_back(objInfo); } } free_detections(dets, nboxes); // show_image(im, "Video"); // cv::waitKey(10); free_image(im); free_image(sized); //printf("all time use %f seconds.\n", what_time_is_it_now()-bttime); return objInfos; } image DnDetect::DnDetect::matToImg(cv::Mat &RefImg) { CV_Assert(RefImg.depth() == CV_8U); int h = RefImg.rows; int w = RefImg.cols; int channels = RefImg.channels(); image im = make_image(w, h, 3); int count = 0; switch (channels) { case 1: { cv::MatIterator_ it, end; for (it = RefImg.begin(), end = RefImg.end(); it != end; ++it) { im.data[count] = im.data[w * h + count] = im.data[w * h * 2 + count] = (float) (*it) / 255.0; ++count; } break; } case 3: { float *desData = im.data; uchar *srcData = RefImg.data; int size = w * h; int size2 = size * 2; for (int i = 0; i < size; i++) { *(desData) = *(srcData + 2) / 255.0f; *(desData + size) = *(srcData + 1) / 255.0f; *(desData + size2) = *(srcData) / 255.0f; desData++; srcData += 3; } break; } default: printf("Channel number not supported.\n"); break; } return im; } int DnDetect::DnDetect::init(void *arg) { DnDetect *p = (DnDetect *) arg; p->m_thresh = appPref.getFloatData("thresh.detect"); cuda_set_device(appPref.getIntData("gpu.index")); char *datacfg = "cfg/coco.data"; char *cfgfile = "cfg/yolov3.cfg"; char *weightfile = "./yolov3.weights"; double loadtime = what_time_is_it_now(); list *options = read_data_cfg(datacfg); char *name_list = option_find_str(options, "names", "data/names.list"); p->names = get_labels(name_list); p->alphabet = load_alphabet(); p->m_net = load_network(cfgfile, weightfile, 0); set_batch_network(p->m_net, 1); printf("load mod use %f seconds.\n", what_time_is_it_now() - loadtime); srand(2222222); p->m_bInitThd = true; return 0; }