#include "darknet.h" #include #include #include #include "network.h" #include "image.h" #include "data.h" #include "utils.h" #include "blas.h" #include "crop_layer.h" #include "connected_layer.h" #include "gru_layer.h" #include "rnn_layer.h" #include "crnn_layer.h" #include "conv_lstm_layer.h" #include "local_layer.h" #include "convolutional_layer.h" #include "activation_layer.h" #include "detection_layer.h" #include "region_layer.h" #include "normalization_layer.h" #include "batchnorm_layer.h" #include "maxpool_layer.h" #include "reorg_layer.h" #include "reorg_old_layer.h" #include "avgpool_layer.h" #include "cost_layer.h" #include "softmax_layer.h" #include "dropout_layer.h" #include "route_layer.h" #include "shortcut_layer.h" #include "scale_channels_layer.h" #include "sam_layer.h" #include "yolo_layer.h" #include "gaussian_yolo_layer.h" #include "upsample_layer.h" #include "parser.h" load_args get_base_args(network *net) { load_args args = { 0 }; args.w = net->w; args.h = net->h; args.size = net->w; args.min = net->min_crop; args.max = net->max_crop; args.angle = net->angle; args.aspect = net->aspect; args.exposure = net->exposure; args.center = net->center; args.saturation = net->saturation; args.hue = net->hue; return args; } int64_t get_current_iteration(network net) { return *net.cur_iteration; } int get_current_batch(network net) { int batch_num = (*net.seen)/(net.batch*net.subdivisions); return batch_num; } /* void reset_momentum(network net) { if (net.momentum == 0) return; net.learning_rate = 0; net.momentum = 0; net.decay = 0; #ifdef GPU //if(net.gpu_index >= 0) update_network_gpu(net); #endif } */ void reset_network_state(network *net, int b) { int i; for (i = 0; i < net->n; ++i) { #ifdef GPU layer l = net->layers[i]; if (l.state_gpu) { fill_ongpu(l.outputs, 0, l.state_gpu + l.outputs*b, 1); } if (l.h_gpu) { fill_ongpu(l.outputs, 0, l.h_gpu + l.outputs*b, 1); } #endif } } void reset_rnn(network *net) { reset_network_state(net, 0); } float get_current_seq_subdivisions(network net) { int sequence_subdivisions = net.init_sequential_subdivisions; if (net.num_steps > 0) { int batch_num = get_current_batch(net); int i; for (i = 0; i < net.num_steps; ++i) { if (net.steps[i] > batch_num) break; sequence_subdivisions *= net.seq_scales[i]; } } if (sequence_subdivisions < 1) sequence_subdivisions = 1; if (sequence_subdivisions > net.subdivisions) sequence_subdivisions = net.subdivisions; return sequence_subdivisions; } int get_sequence_value(network net) { int sequence = 1; if (net.sequential_subdivisions != 0) sequence = net.subdivisions / net.sequential_subdivisions; if (sequence < 1) sequence = 1; return sequence; } float get_current_rate(network net) { int batch_num = get_current_batch(net); int i; float rate; if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); switch (net.policy) { case CONSTANT: return net.learning_rate; case STEP: return net.learning_rate * pow(net.scale, batch_num/net.step); case STEPS: rate = net.learning_rate; for(i = 0; i < net.num_steps; ++i){ if(net.steps[i] > batch_num) return rate; rate *= net.scales[i]; //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net); } return rate; case EXP: return net.learning_rate * pow(net.gamma, batch_num); case POLY: return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); //if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); //return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); case RANDOM: return net.learning_rate * pow(rand_uniform(0,1), net.power); case SIG: return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); case SGDR: { int last_iteration_start = 0; int cycle_size = net.batches_per_cycle; while ((last_iteration_start + cycle_size) < batch_num) { last_iteration_start += cycle_size; cycle_size *= net.batches_cycle_mult; } rate = net.learning_rate_min + 0.5*(net.learning_rate - net.learning_rate_min) * (1. + cos((float)(batch_num - last_iteration_start)*3.14159265 / cycle_size)); return rate; } default: fprintf(stderr, "Policy is weird!\n"); return net.learning_rate; } } char *get_layer_string(LAYER_TYPE a) { switch(a){ case CONVOLUTIONAL: return "convolutional"; case ACTIVE: return "activation"; case LOCAL: return "local"; case DECONVOLUTIONAL: return "deconvolutional"; case CONNECTED: return "connected"; case RNN: return "rnn"; case GRU: return "gru"; case LSTM: return "lstm"; case CRNN: return "crnn"; case MAXPOOL: return "maxpool"; case REORG: return "reorg"; case AVGPOOL: return "avgpool"; case SOFTMAX: return "softmax"; case DETECTION: return "detection"; case REGION: return "region"; case YOLO: return "yolo"; case GAUSSIAN_YOLO: return "Gaussian_yolo"; case DROPOUT: return "dropout"; case CROP: return "crop"; case COST: return "cost"; case ROUTE: return "route"; case SHORTCUT: return "shortcut"; case SCALE_CHANNELS: return "scale_channels"; case SAM: return "sam"; case NORMALIZATION: return "normalization"; case BATCHNORM: return "batchnorm"; default: break; } return "none"; } network make_network(int n) { network net = {0}; net.n = n; net.layers = (layer*)xcalloc(net.n, sizeof(layer)); net.seen = (uint64_t*)xcalloc(1, sizeof(uint64_t)); net.cuda_graph_ready = (int*)xcalloc(1, sizeof(int)); net.badlabels_reject_threshold = (float*)xcalloc(1, sizeof(float)); net.delta_rolling_max = (float*)xcalloc(1, sizeof(float)); net.delta_rolling_avg = (float*)xcalloc(1, sizeof(float)); net.delta_rolling_std = (float*)xcalloc(1, sizeof(float)); net.cur_iteration = (int*)xcalloc(1, sizeof(int)); net.total_bbox = (int*)xcalloc(1, sizeof(int)); net.rewritten_bbox = (int*)xcalloc(1, sizeof(int)); *net.rewritten_bbox = *net.total_bbox = 0; #ifdef GPU net.input_gpu = (float**)xcalloc(1, sizeof(float*)); net.truth_gpu = (float**)xcalloc(1, sizeof(float*)); net.input16_gpu = (float**)xcalloc(1, sizeof(float*)); net.output16_gpu = (float**)xcalloc(1, sizeof(float*)); net.max_input16_size = (size_t*)xcalloc(1, sizeof(size_t)); net.max_output16_size = (size_t*)xcalloc(1, sizeof(size_t)); #endif return net; } void forward_network(network net, network_state state) { state.workspace = net.workspace; int i; for(i = 0; i < net.n; ++i){ state.index = i; layer l = net.layers[i]; if(l.delta && state.train){ scal_cpu(l.outputs * l.batch, 0, l.delta, 1); } //double time = get_time_point(); l.forward(l, state); //printf("%d - Predicted in %lf milli-seconds.\n", i, ((double)get_time_point() - time) / 1000); state.input = l.output; /* float avg_val = 0; int k; for (k = 0; k < l.outputs; ++k) avg_val += l.output[k]; printf(" i: %d - avg_val = %f \n", i, avg_val / l.outputs); */ } } void update_network(network net) { int i; int update_batch = net.batch*net.subdivisions; float rate = get_current_rate(net); for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; if(l.update){ l.update(l, update_batch, rate, net.momentum, net.decay); } } } float *get_network_output(network net) { #ifdef GPU if (gpu_index >= 0) return get_network_output_gpu(net); #endif int i; for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; return net.layers[i].output; } float get_network_cost(network net) { int i; float sum = 0; int count = 0; for(i = 0; i < net.n; ++i){ if(net.layers[i].cost){ sum += net.layers[i].cost[0]; ++count; } } return sum/count; } int get_predicted_class_network(network net) { float *out = get_network_output(net); int k = get_network_output_size(net); return max_index(out, k); } void backward_network(network net, network_state state) { int i; float *original_input = state.input; float *original_delta = state.delta; state.workspace = net.workspace; for(i = net.n-1; i >= 0; --i){ state.index = i; if(i == 0){ state.input = original_input; state.delta = original_delta; }else{ layer prev = net.layers[i-1]; state.input = prev.output; state.delta = prev.delta; } layer l = net.layers[i]; if (l.stopbackward) break; if (l.onlyforward) continue; l.backward(l, state); } } float train_network_datum(network net, float *x, float *y) { #ifdef GPU if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); #endif network_state state={0}; *net.seen += net.batch; state.index = 0; state.net = net; state.input = x; state.delta = 0; state.truth = y; state.train = 1; forward_network(net, state); backward_network(net, state); float error = get_network_cost(net); //if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); if(*(state.net.total_bbox) > 0) fprintf(stderr, " total_bbox = %d, rewritten_bbox = %f %% \n", *(state.net.total_bbox), 100 * (float)*(state.net.rewritten_bbox) / *(state.net.total_bbox)); return error; } float train_network_sgd(network net, data d, int n) { int batch = net.batch; float* X = (float*)xcalloc(batch * d.X.cols, sizeof(float)); float* y = (float*)xcalloc(batch * d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ get_random_batch(d, batch, X, y); net.current_subdivision = i; float err = train_network_datum(net, X, y); sum += err; } free(X); free(y); return (float)sum/(n*batch); } float train_network(network net, data d) { return train_network_waitkey(net, d, 0); } float train_network_waitkey(network net, data d, int wait_key) { assert(d.X.rows % net.batch == 0); int batch = net.batch; int n = d.X.rows / batch; float* X = (float*)xcalloc(batch * d.X.cols, sizeof(float)); float* y = (float*)xcalloc(batch * d.y.cols, sizeof(float)); int i; float sum = 0; for(i = 0; i < n; ++i){ get_next_batch(d, batch, i*batch, X, y); net.current_subdivision = i; float err = train_network_datum(net, X, y); sum += err; if(wait_key) wait_key_cv(5); } (*net.cur_iteration) += 1; #ifdef GPU update_network_gpu(net); #else // GPU update_network(net); #endif // GPU int ema_start_point = net.max_batches / 2; if (net.ema_alpha && (*net.cur_iteration) >= ema_start_point) { int ema_period = (net.max_batches - ema_start_point - 1000) * (1.0 - net.ema_alpha); int ema_apply_point = net.max_batches - 1000; if (!is_ema_initialized(net)) { ema_update(net, 0); // init EMA printf(" EMA initialization \n"); } if ((*net.cur_iteration) == ema_apply_point) { ema_apply(net); // apply EMA (BN rolling mean/var recalculation is required) printf(" ema_apply() \n"); } else if ((*net.cur_iteration) < ema_apply_point)// && (*net.cur_iteration) % ema_period == 0) { ema_update(net, net.ema_alpha); // update EMA printf(" ema_update(), ema_alpha = %f \n", net.ema_alpha); } } int reject_stop_point = net.max_batches*3/4; if ((*net.cur_iteration) < reject_stop_point && net.weights_reject_freq && (*net.cur_iteration) % net.weights_reject_freq == 0) { float sim_threshold = 0.4; reject_similar_weights(net, sim_threshold); } free(X); free(y); return (float)sum/(n*batch); } float train_network_batch(network net, data d, int n) { int i,j; network_state state={0}; state.index = 0; state.net = net; state.train = 1; state.delta = 0; float sum = 0; int batch = 2; for(i = 0; i < n; ++i){ for(j = 0; j < batch; ++j){ int index = random_gen()%d.X.rows; state.input = d.X.vals[index]; state.truth = d.y.vals[index]; forward_network(net, state); backward_network(net, state); sum += get_network_cost(net); } update_network(net); } return (float)sum/(n*batch); } int recalculate_workspace_size(network *net) { #ifdef GPU cuda_set_device(net->gpu_index); if (gpu_index >= 0) cuda_free(net->workspace); #endif int i; size_t workspace_size = 0; for (i = 0; i < net->n; ++i) { layer l = net->layers[i]; //printf(" %d: layer = %d,", i, l.type); if (l.type == CONVOLUTIONAL) { l.workspace_size = get_convolutional_workspace_size(l); } else if (l.type == CONNECTED) { l.workspace_size = get_connected_workspace_size(l); } if (l.workspace_size > workspace_size) workspace_size = l.workspace_size; net->layers[i] = l; } #ifdef GPU if (gpu_index >= 0) { printf("\n try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000); net->workspace = cuda_make_array(0, workspace_size / sizeof(float) + 1); printf(" CUDA allocate done! \n"); } else { free(net->workspace); net->workspace = (float*)xcalloc(1, workspace_size); } #else free(net->workspace); net->workspace = (float*)xcalloc(1, workspace_size); #endif //fprintf(stderr, " Done!\n"); return 0; } void set_batch_network(network *net, int b) { net->batch = b; int i; for(i = 0; i < net->n; ++i){ net->layers[i].batch = b; #ifdef CUDNN if(net->layers[i].type == CONVOLUTIONAL){ cudnn_convolutional_setup(net->layers + i, cudnn_fastest, 0); } else if (net->layers[i].type == MAXPOOL) { cudnn_maxpool_setup(net->layers + i); } #endif } recalculate_workspace_size(net); // recalculate workspace size } int resize_network(network *net, int w, int h) { #ifdef GPU cuda_set_device(net->gpu_index); if(gpu_index >= 0){ cuda_free(net->workspace); if (net->input_gpu) { cuda_free(*net->input_gpu); *net->input_gpu = 0; cuda_free(*net->truth_gpu); *net->truth_gpu = 0; } if (net->input_state_gpu) cuda_free(net->input_state_gpu); if (net->input_pinned_cpu) { if (net->input_pinned_cpu_flag) cudaFreeHost(net->input_pinned_cpu); else free(net->input_pinned_cpu); } } #endif int i; //if(w == net->w && h == net->h) return 0; net->w = w; net->h = h; int inputs = 0; size_t workspace_size = 0; //fprintf(stderr, "Resizing to %d x %d...\n", w, h); //fflush(stderr); for (i = 0; i < net->n; ++i){ layer l = net->layers[i]; //printf(" (resize %d: layer = %d) , ", i, l.type); if(l.type == CONVOLUTIONAL){ resize_convolutional_layer(&l, w, h); } else if (l.type == CRNN) { resize_crnn_layer(&l, w, h); }else if (l.type == CONV_LSTM) { resize_conv_lstm_layer(&l, w, h); }else if(l.type == CROP){ resize_crop_layer(&l, w, h); }else if(l.type == MAXPOOL){ resize_maxpool_layer(&l, w, h); }else if (l.type == LOCAL_AVGPOOL) { resize_maxpool_layer(&l, w, h); }else if (l.type == BATCHNORM) { resize_batchnorm_layer(&l, w, h); }else if(l.type == REGION){ resize_region_layer(&l, w, h); }else if (l.type == YOLO) { resize_yolo_layer(&l, w, h); }else if (l.type == GAUSSIAN_YOLO) { resize_gaussian_yolo_layer(&l, w, h); }else if(l.type == ROUTE){ resize_route_layer(&l, net); }else if (l.type == SHORTCUT) { resize_shortcut_layer(&l, w, h, net); }else if (l.type == SCALE_CHANNELS) { resize_scale_channels_layer(&l, net); }else if (l.type == SAM) { resize_sam_layer(&l, w, h); }else if (l.type == DROPOUT) { resize_dropout_layer(&l, inputs); l.out_w = l.w = w; l.out_h = l.h = h; l.output = net->layers[i - 1].output; l.delta = net->layers[i - 1].delta; #ifdef GPU l.output_gpu = net->layers[i-1].output_gpu; l.delta_gpu = net->layers[i-1].delta_gpu; #endif }else if (l.type == UPSAMPLE) { resize_upsample_layer(&l, w, h); }else if(l.type == REORG){ resize_reorg_layer(&l, w, h); } else if (l.type == REORG_OLD) { resize_reorg_old_layer(&l, w, h); }else if(l.type == AVGPOOL){ resize_avgpool_layer(&l, w, h); }else if(l.type == NORMALIZATION){ resize_normalization_layer(&l, w, h); }else if(l.type == COST){ resize_cost_layer(&l, inputs); }else{ fprintf(stderr, "Resizing type %d \n", (int)l.type); error("Cannot resize this type of layer"); } if(l.workspace_size > workspace_size) workspace_size = l.workspace_size; inputs = l.outputs; net->layers[i] = l; //if(l.type != DROPOUT) { w = l.out_w; h = l.out_h; } //if(l.type == AVGPOOL) break; } #ifdef GPU const int size = get_network_input_size(*net) * net->batch; if(gpu_index >= 0){ printf(" try to allocate additional workspace_size = %1.2f MB \n", (float)workspace_size / 1000000); net->workspace = cuda_make_array(0, workspace_size/sizeof(float) + 1); net->input_state_gpu = cuda_make_array(0, size); if (cudaSuccess == cudaHostAlloc(&net->input_pinned_cpu, size * sizeof(float), cudaHostRegisterMapped)) net->input_pinned_cpu_flag = 1; else { cudaGetLastError(); // reset CUDA-error net->input_pinned_cpu = (float*)xcalloc(size, sizeof(float)); net->input_pinned_cpu_flag = 0; } printf(" CUDA allocate done! \n"); }else { free(net->workspace); net->workspace = (float*)xcalloc(1, workspace_size); if(!net->input_pinned_cpu_flag) net->input_pinned_cpu = (float*)xrealloc(net->input_pinned_cpu, size * sizeof(float)); } #else free(net->workspace); net->workspace = (float*)xcalloc(1, workspace_size); #endif //fprintf(stderr, " Done!\n"); return 0; } int get_network_output_size(network net) { int i; for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; return net.layers[i].outputs; } int get_network_input_size(network net) { return net.layers[0].inputs; } detection_layer get_network_detection_layer(network net) { int i; for(i = 0; i < net.n; ++i){ if(net.layers[i].type == DETECTION){ return net.layers[i]; } } fprintf(stderr, "Detection layer not found!!\n"); detection_layer l = { (LAYER_TYPE)0 }; return l; } image get_network_image_layer(network net, int i) { layer l = net.layers[i]; if (l.out_w && l.out_h && l.out_c){ return float_to_image(l.out_w, l.out_h, l.out_c, l.output); } image def = {0}; return def; } layer* get_network_layer(network* net, int i) { return net->layers + i; } image get_network_image(network net) { int i; for(i = net.n-1; i >= 0; --i){ image m = get_network_image_layer(net, i); if(m.h != 0) return m; } image def = {0}; return def; } void visualize_network(network net) { image *prev = 0; int i; char buff[256]; for(i = 0; i < net.n; ++i){ sprintf(buff, "Layer %d", i); layer l = net.layers[i]; if(l.type == CONVOLUTIONAL){ prev = visualize_convolutional_layer(l, buff, prev); } } } void top_predictions(network net, int k, int *index) { int size = get_network_output_size(net); float *out = get_network_output(net); top_k(out, size, k, index); } // A version of network_predict that uses a pointer for the network // struct to make the python binding work properly. float *network_predict_ptr(network *net, float *input) { return network_predict(*net, input); } float *network_predict(network net, float *input) { #ifdef GPU if(gpu_index >= 0) return network_predict_gpu(net, input); #endif network_state state = {0}; state.net = net; state.index = 0; state.input = input; state.truth = 0; state.train = 0; state.delta = 0; forward_network(net, state); float *out = get_network_output(net); return out; } int num_detections(network *net, float thresh) { int i; int s = 0; for (i = 0; i < net->n; ++i) { layer l = net->layers[i]; if (l.type == YOLO) { s += yolo_num_detections(l, thresh); } if (l.type == GAUSSIAN_YOLO) { s += gaussian_yolo_num_detections(l, thresh); } if (l.type == DETECTION || l.type == REGION) { s += l.w*l.h*l.n; } } return s; } int num_detections_batch(network *net, float thresh, int batch) { int i; int s = 0; for (i = 0; i < net->n; ++i) { layer l = net->layers[i]; if (l.type == YOLO) { s += yolo_num_detections_batch(l, thresh, batch); } if (l.type == DETECTION || l.type == REGION) { s += l.w*l.h*l.n; } } return s; } detection *make_network_boxes(network *net, float thresh, int *num) { int i; layer l = net->layers[net->n - 1]; for (i = 0; i < net->n; ++i) { layer l_tmp = net->layers[i]; if (l_tmp.type == YOLO || l_tmp.type == GAUSSIAN_YOLO || l_tmp.type == DETECTION || l_tmp.type == REGION) { l = l_tmp; break; } } int nboxes = num_detections(net, thresh); if (num) *num = nboxes; detection* dets = (detection*)xcalloc(nboxes, sizeof(detection)); for (i = 0; i < nboxes; ++i) { dets[i].prob = (float*)xcalloc(l.classes, sizeof(float)); // tx,ty,tw,th uncertainty if(l.type == GAUSSIAN_YOLO) dets[i].uc = (float*)xcalloc(4, sizeof(float)); // Gaussian_YOLOv3 else dets[i].uc = NULL; if (l.coords > 4) dets[i].mask = (float*)xcalloc(l.coords - 4, sizeof(float)); else dets[i].mask = NULL; if(l.embedding_output) dets[i].embeddings = (float*)xcalloc(l.embedding_size, sizeof(float)); else dets[i].embeddings = NULL; dets[i].embedding_size = l.embedding_size; } return dets; } detection *make_network_boxes_batch(network *net, float thresh, int *num, int batch) { int i; layer l = net->layers[net->n - 1]; for (i = 0; i < net->n; ++i) { layer l_tmp = net->layers[i]; if (l_tmp.type == YOLO || l_tmp.type == GAUSSIAN_YOLO || l_tmp.type == DETECTION || l_tmp.type == REGION) { l = l_tmp; break; } } int nboxes = num_detections_batch(net, thresh, batch); assert(num != NULL); *num = nboxes; detection* dets = (detection*)calloc(nboxes, sizeof(detection)); for (i = 0; i < nboxes; ++i) { dets[i].prob = (float*)calloc(l.classes, sizeof(float)); // tx,ty,tw,th uncertainty if (l.type == GAUSSIAN_YOLO) dets[i].uc = (float*)xcalloc(4, sizeof(float)); // Gaussian_YOLOv3 else dets[i].uc = NULL; if (l.coords > 4) dets[i].mask = (float*)xcalloc(l.coords - 4, sizeof(float)); else dets[i].mask = NULL; if (l.embedding_output) dets[i].embeddings = (float*)xcalloc(l.embedding_size, sizeof(float)); else dets[i].embeddings = NULL; dets[i].embedding_size = l.embedding_size; } return dets; } void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter) { box* boxes = (box*)xcalloc(l.w * l.h * l.n, sizeof(box)); float** probs = (float**)xcalloc(l.w * l.h * l.n, sizeof(float*)); int i, j; for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = (float*)xcalloc(l.classes, sizeof(float)); get_region_boxes(l, 1, 1, thresh, probs, boxes, 0, map); for (j = 0; j < l.w*l.h*l.n; ++j) { dets[j].classes = l.classes; dets[j].bbox = boxes[j]; dets[j].objectness = 1; for (i = 0; i < l.classes; ++i) { dets[j].prob[i] = probs[j][i]; } } free(boxes); free_ptrs((void **)probs, l.w*l.h*l.n); //correct_region_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative); correct_yolo_boxes(dets, l.w*l.h*l.n, w, h, net_w, net_h, relative, letter); } void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter) { int prev_classes = -1; int j; for (j = 0; j < net->n; ++j) { layer l = net->layers[j]; if (l.type == YOLO) { int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter); dets += count; if (prev_classes < 0) prev_classes = l.classes; else if (prev_classes != l.classes) { printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n", prev_classes, l.classes); } } if (l.type == GAUSSIAN_YOLO) { int count = get_gaussian_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter); dets += count; } if (l.type == REGION) { custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter); //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets); dets += l.w*l.h*l.n; } if (l.type == DETECTION) { get_detection_detections(l, w, h, thresh, dets); dets += l.w*l.h*l.n; } } } void fill_network_boxes_batch(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter, int batch) { int prev_classes = -1; int j; for (j = 0; j < net->n; ++j) { layer l = net->layers[j]; if (l.type == YOLO) { int count = get_yolo_detections_batch(l, w, h, net->w, net->h, thresh, map, relative, dets, letter, batch); dets += count; if (prev_classes < 0) prev_classes = l.classes; else if (prev_classes != l.classes) { printf(" Error: Different [yolo] layers have different number of classes = %d and %d - check your cfg-file! \n", prev_classes, l.classes); } } if (l.type == REGION) { custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter); //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets); dets += l.w*l.h*l.n; } if (l.type == DETECTION) { get_detection_detections(l, w, h, thresh, dets); dets += l.w*l.h*l.n; } } } detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter) { detection *dets = make_network_boxes(net, thresh, num); fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter); return dets; } void free_detections(detection *dets, int n) { int i; for (i = 0; i < n; ++i) { free(dets[i].prob); if (dets[i].uc) free(dets[i].uc); if (dets[i].mask) free(dets[i].mask); if (dets[i].embeddings) free(dets[i].embeddings); } free(dets); } void free_batch_detections(det_num_pair *det_num_pairs, int n) { int i; for(i=0; i thresh && show) { if (class_id != -1) strcat(send_buf, ", \n"); class_id = j; char *buf = (char *)calloc(2048, sizeof(char)); if (!buf) return 0; //sprintf(buf, "{\"image_id\":%d, \"category_id\":%d, \"bbox\":[%f, %f, %f, %f], \"score\":%f}", // image_id, j, dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]); sprintf(buf, " {\"class_id\":%d, \"name\":\"%s\", \"relative_coordinates\":{\"center_x\":%f, \"center_y\":%f, \"width\":%f, \"height\":%f}, \"confidence\":%f}", j, names[j], dets[i].bbox.x, dets[i].bbox.y, dets[i].bbox.w, dets[i].bbox.h, dets[i].prob[j]); int send_buf_len = strlen(send_buf); int buf_len = strlen(buf); int total_len = send_buf_len + buf_len + 100; send_buf = (char *)realloc(send_buf, total_len * sizeof(char)); if (!send_buf) { if (buf) free(buf); return 0;// exit(-1); } strcat(send_buf, buf); free(buf); } } } strcat(send_buf, "\n ] \n}"); return send_buf; } float *network_predict_image(network *net, image im) { //image imr = letterbox_image(im, net->w, net->h); float *p; if(net->batch != 1) set_batch_network(net, 1); if (im.w == net->w && im.h == net->h) { // Input image is the same size as our net, predict on that image p = network_predict(*net, im.data); } else { // Need to resize image to the desired size for the net image imr = resize_image(im, net->w, net->h); p = network_predict(*net, imr.data); free_image(imr); } return p; } det_num_pair* network_predict_batch(network *net, image im, int batch_size, int w, int h, float thresh, float hier, int *map, int relative, int letter) { network_predict(*net, im.data); det_num_pair *pdets = (struct det_num_pair *)calloc(batch_size, sizeof(det_num_pair)); int num; int batch; for(batch=0; batch < batch_size; batch++){ detection *dets = make_network_boxes_batch(net, thresh, &num, batch); fill_network_boxes_batch(net, w, h, thresh, hier, map, relative, dets, letter, batch); pdets[batch].num = num; pdets[batch].dets = dets; } return pdets; } float *network_predict_image_letterbox(network *net, image im) { //image imr = letterbox_image(im, net->w, net->h); float *p; if (net->batch != 1) set_batch_network(net, 1); if (im.w == net->w && im.h == net->h) { // Input image is the same size as our net, predict on that image p = network_predict(*net, im.data); } else { // Need to resize image to the desired size for the net image imr = letterbox_image(im, net->w, net->h); p = network_predict(*net, imr.data); free_image(imr); } return p; } int network_width(network *net) { return net->w; } int network_height(network *net) { return net->h; } matrix network_predict_data_multi(network net, data test, int n) { int i,j,b,m; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float* X = (float*)xcalloc(net.batch * test.X.rows, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } for(m = 0; m < n; ++m){ float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] += out[j+b*k]/n; } } } } free(X); return pred; } matrix network_predict_data(network net, data test) { int i,j,b; int k = get_network_output_size(net); matrix pred = make_matrix(test.X.rows, k); float* X = (float*)xcalloc(net.batch * test.X.cols, sizeof(float)); for(i = 0; i < test.X.rows; i += net.batch){ for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); } float *out = network_predict(net, X); for(b = 0; b < net.batch; ++b){ if(i+b == test.X.rows) break; for(j = 0; j < k; ++j){ pred.vals[i+b][j] = out[j+b*k]; } } } free(X); return pred; } void print_network(network net) { int i,j; for(i = 0; i < net.n; ++i){ layer l = net.layers[i]; float *output = l.output; int n = l.outputs; float mean = mean_array(output, n); float vari = variance_array(output, n); fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); if(n > 100) n = 100; for(j = 0; j < n; ++j) fprintf(stderr, "%f, ", output[j]); if(n == 100)fprintf(stderr,".....\n"); fprintf(stderr, "\n"); } } void compare_networks(network n1, network n2, data test) { matrix g1 = network_predict_data(n1, test); matrix g2 = network_predict_data(n2, test); int i; int a,b,c,d; a = b = c = d = 0; for(i = 0; i < g1.rows; ++i){ int truth = max_index(test.y.vals[i], test.y.cols); int p1 = max_index(g1.vals[i], g1.cols); int p2 = max_index(g2.vals[i], g2.cols); if(p1 == truth){ if(p2 == truth) ++d; else ++c; }else{ if(p2 == truth) ++b; else ++a; } } printf("%5d %5d\n%5d %5d\n", a, b, c, d); float num = pow((abs(b - c) - 1.), 2.); float den = b + c; printf("%f\n", num/den); } float network_accuracy(network net, data d) { matrix guess = network_predict_data(net, d); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; } float *network_accuracies(network net, data d, int n) { static float acc[2]; matrix guess = network_predict_data(net, d); acc[0] = matrix_topk_accuracy(d.y, guess, 1); acc[1] = matrix_topk_accuracy(d.y, guess, n); free_matrix(guess); return acc; } float network_accuracy_multi(network net, data d, int n) { matrix guess = network_predict_data_multi(net, d, n); float acc = matrix_topk_accuracy(d.y, guess,1); free_matrix(guess); return acc; } void free_network_ptr(network* net) { free_network(*net); } void free_network(network net) { int i; for (i = 0; i < net.n; ++i) { free_layer(net.layers[i]); } free(net.layers); free(net.seq_scales); free(net.scales); free(net.steps); free(net.seen); free(net.cuda_graph_ready); free(net.badlabels_reject_threshold); free(net.delta_rolling_max); free(net.delta_rolling_avg); free(net.delta_rolling_std); free(net.cur_iteration); free(net.total_bbox); free(net.rewritten_bbox); #ifdef GPU if (gpu_index >= 0) cuda_free(net.workspace); else free(net.workspace); free_pinned_memory(); if (net.input_state_gpu) cuda_free(net.input_state_gpu); if (net.input_pinned_cpu) { // CPU if (net.input_pinned_cpu_flag) cudaFreeHost(net.input_pinned_cpu); else free(net.input_pinned_cpu); } if (*net.input_gpu) cuda_free(*net.input_gpu); if (*net.truth_gpu) cuda_free(*net.truth_gpu); if (net.input_gpu) free(net.input_gpu); if (net.truth_gpu) free(net.truth_gpu); if (*net.input16_gpu) cuda_free(*net.input16_gpu); if (*net.output16_gpu) cuda_free(*net.output16_gpu); if (net.input16_gpu) free(net.input16_gpu); if (net.output16_gpu) free(net.output16_gpu); if (net.max_input16_size) free(net.max_input16_size); if (net.max_output16_size) free(net.max_output16_size); #else free(net.workspace); #endif } static float relu(float src) { if (src > 0) return src; return 0; } static float lrelu(float src) { const float eps = 0.001; if (src > eps) return src; return eps; } void fuse_conv_batchnorm(network net) { int j; for (j = 0; j < net.n; ++j) { layer *l = &net.layers[j]; if (l->type == CONVOLUTIONAL) { //printf(" Merges Convolutional-%d and batch_norm \n", j); if (l->share_layer != NULL) { l->batch_normalize = 0; } if (l->batch_normalize) { int f; for (f = 0; f < l->n; ++f) { l->biases[f] = l->biases[f] - (double)l->scales[f] * l->rolling_mean[f] / (sqrt((double)l->rolling_variance[f] + .00001)); double precomputed = l->scales[f] / (sqrt((double)l->rolling_variance[f] + .00001)); const size_t filter_size = l->size*l->size*l->c / l->groups; int i; for (i = 0; i < filter_size; ++i) { int w_index = f*filter_size + i; l->weights[w_index] *= precomputed; } } free_convolutional_batchnorm(l); l->batch_normalize = 0; #ifdef GPU if (gpu_index >= 0) { push_convolutional_layer(*l); } #endif } } else if (l->type == SHORTCUT && l->weights && l->weights_normalization) { if (l->nweights > 0) { //cuda_pull_array(l.weights_gpu, l.weights, l.nweights); int i; for (i = 0; i < l->nweights; ++i) printf(" w = %f,", l->weights[i]); printf(" l->nweights = %d, j = %d \n", l->nweights, j); } // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) const int layer_step = l->nweights / (l->n + 1); // 1 or l.c or (l.c * l.h * l.w) int chan, i; for (chan = 0; chan < layer_step; ++chan) { float sum = 1, max_val = -FLT_MAX; if (l->weights_normalization == SOFTMAX_NORMALIZATION) { for (i = 0; i < (l->n + 1); ++i) { int w_index = chan + i * layer_step; float w = l->weights[w_index]; if (max_val < w) max_val = w; } } const float eps = 0.0001; sum = eps; for (i = 0; i < (l->n + 1); ++i) { int w_index = chan + i * layer_step; float w = l->weights[w_index]; if (l->weights_normalization == RELU_NORMALIZATION) sum += lrelu(w); else if (l->weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); } for (i = 0; i < (l->n + 1); ++i) { int w_index = chan + i * layer_step; float w = l->weights[w_index]; if (l->weights_normalization == RELU_NORMALIZATION) w = lrelu(w) / sum; else if (l->weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; l->weights[w_index] = w; } } l->weights_normalization = NO_NORMALIZATION; #ifdef GPU if (gpu_index >= 0) { push_shortcut_layer(*l); } #endif } else { //printf(" Fusion skip layer type: %d \n", l->type); } } } void forward_blank_layer(layer l, network_state state) {} void calculate_binary_weights(network net) { int j; for (j = 0; j < net.n; ++j) { layer *l = &net.layers[j]; if (l->type == CONVOLUTIONAL) { //printf(" Merges Convolutional-%d and batch_norm \n", j); if (l->xnor) { //printf("\n %d \n", j); //l->lda_align = 256; // 256bit for AVX2 // set in make_convolutional_layer() //if (l->size*l->size*l->c >= 2048) l->lda_align = 512; binary_align_weights(l); if (net.layers[j].use_bin_output) { l->activation = LINEAR; } #ifdef GPU // fuse conv_xnor + shortcut -> conv_xnor if ((j + 1) < net.n && net.layers[j].type == CONVOLUTIONAL) { layer *sc = &net.layers[j + 1]; if (sc->type == SHORTCUT && sc->w == sc->out_w && sc->h == sc->out_h && sc->c == sc->out_c) { l->bin_conv_shortcut_in_gpu = net.layers[net.layers[j + 1].index].output_gpu; l->bin_conv_shortcut_out_gpu = net.layers[j + 1].output_gpu; net.layers[j + 1].type = BLANK; net.layers[j + 1].forward_gpu = forward_blank_layer; } } #endif // GPU } } } //printf("\n calculate_binary_weights Done! \n"); } void copy_cudnn_descriptors(layer src, layer *dst) { #ifdef CUDNN dst->normTensorDesc = src.normTensorDesc; dst->normDstTensorDesc = src.normDstTensorDesc; dst->normDstTensorDescF16 = src.normDstTensorDescF16; dst->srcTensorDesc = src.srcTensorDesc; dst->dstTensorDesc = src.dstTensorDesc; dst->srcTensorDesc16 = src.srcTensorDesc16; dst->dstTensorDesc16 = src.dstTensorDesc16; #endif // CUDNN } void copy_weights_net(network net_train, network *net_map) { int k; for (k = 0; k < net_train.n; ++k) { layer *l = &(net_train.layers[k]); layer tmp_layer; copy_cudnn_descriptors(net_map->layers[k], &tmp_layer); net_map->layers[k] = net_train.layers[k]; copy_cudnn_descriptors(tmp_layer, &net_map->layers[k]); if (l->type == CRNN) { layer tmp_input_layer, tmp_self_layer, tmp_output_layer; copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer); copy_cudnn_descriptors(*net_map->layers[k].self_layer, &tmp_self_layer); copy_cudnn_descriptors(*net_map->layers[k].output_layer, &tmp_output_layer); net_map->layers[k].input_layer = net_train.layers[k].input_layer; net_map->layers[k].self_layer = net_train.layers[k].self_layer; net_map->layers[k].output_layer = net_train.layers[k].output_layer; //net_map->layers[k].output_gpu = net_map->layers[k].output_layer->output_gpu; // already copied out of if() copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer); copy_cudnn_descriptors(tmp_self_layer, net_map->layers[k].self_layer); copy_cudnn_descriptors(tmp_output_layer, net_map->layers[k].output_layer); } else if(l->input_layer) // for AntiAliasing { layer tmp_input_layer; copy_cudnn_descriptors(*net_map->layers[k].input_layer, &tmp_input_layer); net_map->layers[k].input_layer = net_train.layers[k].input_layer; copy_cudnn_descriptors(tmp_input_layer, net_map->layers[k].input_layer); } net_map->layers[k].batch = 1; net_map->layers[k].steps = 1; } } // combine Training and Validation networks network combine_train_valid_networks(network net_train, network net_map) { network net_combined = make_network(net_train.n); layer *old_layers = net_combined.layers; net_combined = net_train; net_combined.layers = old_layers; net_combined.batch = 1; int k; for (k = 0; k < net_train.n; ++k) { layer *l = &(net_train.layers[k]); net_combined.layers[k] = net_train.layers[k]; net_combined.layers[k].batch = 1; if (l->type == CONVOLUTIONAL) { #ifdef CUDNN net_combined.layers[k].normTensorDesc = net_map.layers[k].normTensorDesc; net_combined.layers[k].normDstTensorDesc = net_map.layers[k].normDstTensorDesc; net_combined.layers[k].normDstTensorDescF16 = net_map.layers[k].normDstTensorDescF16; net_combined.layers[k].srcTensorDesc = net_map.layers[k].srcTensorDesc; net_combined.layers[k].dstTensorDesc = net_map.layers[k].dstTensorDesc; net_combined.layers[k].srcTensorDesc16 = net_map.layers[k].srcTensorDesc16; net_combined.layers[k].dstTensorDesc16 = net_map.layers[k].dstTensorDesc16; #endif // CUDNN } } return net_combined; } void free_network_recurrent_state(network net) { int k; for (k = 0; k < net.n; ++k) { if (net.layers[k].type == CONV_LSTM) free_state_conv_lstm(net.layers[k]); if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); } } void randomize_network_recurrent_state(network net) { int k; for (k = 0; k < net.n; ++k) { if (net.layers[k].type == CONV_LSTM) randomize_state_conv_lstm(net.layers[k]); if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); } } void remember_network_recurrent_state(network net) { int k; for (k = 0; k < net.n; ++k) { if (net.layers[k].type == CONV_LSTM) remember_state_conv_lstm(net.layers[k]); //if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); } } void restore_network_recurrent_state(network net) { int k; for (k = 0; k < net.n; ++k) { if (net.layers[k].type == CONV_LSTM) restore_state_conv_lstm(net.layers[k]); if (net.layers[k].type == CRNN) free_state_crnn(net.layers[k]); } } int is_ema_initialized(network net) { int i; for (i = 0; i < net.n; ++i) { layer l = net.layers[i]; if (l.type == CONVOLUTIONAL) { int k; if (l.weights_ema) { for (k = 0; k < l.nweights; ++k) { if (l.weights_ema[k] != 0) return 1; } } } } return 0; } void ema_update(network net, float ema_alpha) { int i; for (i = 0; i < net.n; ++i) { layer l = net.layers[i]; if (l.type == CONVOLUTIONAL) { #ifdef GPU if (gpu_index >= 0) { pull_convolutional_layer(l); } #endif int k; if (l.weights_ema) { for (k = 0; k < l.nweights; ++k) { l.weights_ema[k] = ema_alpha * l.weights_ema[k] + (1 - ema_alpha) * l.weights[k]; } } for (k = 0; k < l.n; ++k) { if (l.biases_ema) l.biases_ema[k] = ema_alpha * l.biases_ema[k] + (1 - ema_alpha) * l.biases[k]; if (l.scales_ema) l.scales_ema[k] = ema_alpha * l.scales_ema[k] + (1 - ema_alpha) * l.scales[k]; } } } } void ema_apply(network net) { int i; for (i = 0; i < net.n; ++i) { layer l = net.layers[i]; if (l.type == CONVOLUTIONAL) { int k; if (l.weights_ema) { for (k = 0; k < l.nweights; ++k) { l.weights[k] = l.weights_ema[k]; } } for (k = 0; k < l.n; ++k) { if (l.biases_ema) l.biases[k] = l.biases_ema[k]; if (l.scales_ema) l.scales[k] = l.scales_ema[k]; } #ifdef GPU if (gpu_index >= 0) { push_convolutional_layer(l); } #endif } } } void reject_similar_weights(network net, float sim_threshold) { int i; for (i = 0; i < net.n; ++i) { layer l = net.layers[i]; if (i == 0) continue; if (net.n > i + 1) if (net.layers[i + 1].type == YOLO) continue; if (net.n > i + 2) if (net.layers[i + 2].type == YOLO) continue; if (net.n > i + 3) if (net.layers[i + 3].type == YOLO) continue; if (l.type == CONVOLUTIONAL && l.activation != LINEAR) { #ifdef GPU if (gpu_index >= 0) { pull_convolutional_layer(l); } #endif int k, j; float max_sim = -1000; int max_sim_index = 0; int max_sim_index2 = 0; int filter_size = l.size*l.size*l.c; for (k = 0; k < l.n; ++k) { for (j = k+1; j < l.n; ++j) { int w1 = k; int w2 = j; float sim = cosine_similarity(&l.weights[filter_size*w1], &l.weights[filter_size*w2], filter_size); if (sim > max_sim) { max_sim = sim; max_sim_index = w1; max_sim_index2 = w2; } } } printf(" reject_similar_weights: i = %d, l.n = %d, w1 = %d, w2 = %d, sim = %f, thresh = %f \n", i, l.n, max_sim_index, max_sim_index2, max_sim, sim_threshold); if (max_sim > sim_threshold) { printf(" rejecting... \n"); float scale = sqrt(2. / (l.size*l.size*l.c / l.groups)); for (k = 0; k < filter_size; ++k) { l.weights[max_sim_index*filter_size + k] = scale*rand_uniform(-1, 1); } if (l.biases) l.biases[max_sim_index] = 0.0f; if (l.scales) l.scales[max_sim_index] = 1.0f; } #ifdef GPU if (gpu_index >= 0) { push_convolutional_layer(l); } #endif } } }