#include "route_layer.h" #include "utils.h" #include "dark_cuda.h" #include "blas.h" #include route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes, int groups, int group_id) { fprintf(stderr,"route "); route_layer l = { (LAYER_TYPE)0 }; l.type = ROUTE; l.batch = batch; l.n = n; l.input_layers = input_layers; l.input_sizes = input_sizes; l.groups = groups; l.group_id = group_id; int i; int outputs = 0; for(i = 0; i < n; ++i){ fprintf(stderr," %d", input_layers[i]); outputs += input_sizes[i]; } outputs = outputs / groups; l.outputs = outputs; l.inputs = outputs; //fprintf(stderr, " inputs = %d \t outputs = %d, groups = %d, group_id = %d \n", l.inputs, l.outputs, l.groups, l.group_id); l.delta = (float*)xcalloc(outputs * batch, sizeof(float)); l.output = (float*)xcalloc(outputs * batch, sizeof(float)); l.forward = forward_route_layer; l.backward = backward_route_layer; #ifdef GPU l.forward_gpu = forward_route_layer_gpu; l.backward_gpu = backward_route_layer_gpu; l.delta_gpu = cuda_make_array(l.delta, outputs*batch); l.output_gpu = cuda_make_array(l.output, outputs*batch); #endif return l; } void resize_route_layer(route_layer *l, network *net) { int i; layer first = net->layers[l->input_layers[0]]; l->out_w = first.out_w; l->out_h = first.out_h; l->out_c = first.out_c; l->outputs = first.outputs; l->input_sizes[0] = first.outputs; for(i = 1; i < l->n; ++i){ int index = l->input_layers[i]; layer next = net->layers[index]; l->outputs += next.outputs; l->input_sizes[i] = next.outputs; if(next.out_w == first.out_w && next.out_h == first.out_h){ l->out_c += next.out_c; }else{ printf("Error: Different size of input layers: %d x %d, %d x %d\n", next.out_w, next.out_h, first.out_w, first.out_h); l->out_h = l->out_w = l->out_c = 0; exit(EXIT_FAILURE); } } l->out_c = l->out_c / l->groups; l->outputs = l->outputs / l->groups; l->inputs = l->outputs; l->delta = (float*)xrealloc(l->delta, l->outputs * l->batch * sizeof(float)); l->output = (float*)xrealloc(l->output, l->outputs * l->batch * sizeof(float)); #ifdef GPU cuda_free(l->output_gpu); cuda_free(l->delta_gpu); l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); #endif } void forward_route_layer(const route_layer l, network_state state) { int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *input = state.net.layers[index].output; int input_size = l.input_sizes[i]; int part_input_size = input_size / l.groups; for(j = 0; j < l.batch; ++j){ //copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1); copy_cpu(part_input_size, input + j*input_size + part_input_size*l.group_id, 1, l.output + offset + j*l.outputs, 1); } //offset += input_size; offset += part_input_size; } } void backward_route_layer(const route_layer l, network_state state) { int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *delta = state.net.layers[index].delta; int input_size = l.input_sizes[i]; int part_input_size = input_size / l.groups; for(j = 0; j < l.batch; ++j){ //axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1); axpy_cpu(part_input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1); } //offset += input_size; offset += part_input_size; } } #ifdef GPU void forward_route_layer_gpu(const route_layer l, network_state state) { if (l.stream >= 0) { switch_stream(l.stream); } if (l.wait_stream_id >= 0) { wait_stream(l.wait_stream_id); } int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *input = state.net.layers[index].output_gpu; int input_size = l.input_sizes[i]; int part_input_size = input_size / l.groups; for(j = 0; j < l.batch; ++j){ //copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1); //simple_copy_ongpu(input_size, input + j*input_size, l.output_gpu + offset + j*l.outputs); simple_copy_ongpu(part_input_size, input + j*input_size + part_input_size*l.group_id, l.output_gpu + offset + j*l.outputs); } //offset += input_size; offset += part_input_size; } } void backward_route_layer_gpu(const route_layer l, network_state state) { int i, j; int offset = 0; for(i = 0; i < l.n; ++i){ int index = l.input_layers[i]; float *delta = state.net.layers[index].delta_gpu; int input_size = l.input_sizes[i]; int part_input_size = input_size / l.groups; for(j = 0; j < l.batch; ++j){ //axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1); axpy_ongpu(part_input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size + part_input_size*l.group_id, 1); } //offset += input_size; offset += part_input_size; } } #endif