#include "softmax_layer.h" #include "blas.h" #include "dark_cuda.h" #include "utils.h" #include "blas.h" #include #include #include #include #include #define SECRET_NUM -1234 void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output) { int b; for (b = 0; b < batch; ++b) { int i; int count = 0; for (i = 0; i < hierarchy->groups; ++i) { int group_size = hierarchy->group_size[i]; softmax(input + b*inputs + count, group_size, temp, output + b*inputs + count, 1); count += group_size; } } } softmax_layer make_softmax_layer(int batch, int inputs, int groups) { assert(inputs%groups == 0); fprintf(stderr, "softmax %4d\n", inputs); softmax_layer l = { (LAYER_TYPE)0 }; l.type = SOFTMAX; l.batch = batch; l.groups = groups; l.inputs = inputs; l.outputs = inputs; l.loss = (float*)xcalloc(inputs * batch, sizeof(float)); l.output = (float*)xcalloc(inputs * batch, sizeof(float)); l.delta = (float*)xcalloc(inputs * batch, sizeof(float)); l.cost = (float*)xcalloc(1, sizeof(float)); l.forward = forward_softmax_layer; l.backward = backward_softmax_layer; #ifdef GPU l.forward_gpu = forward_softmax_layer_gpu; l.backward_gpu = backward_softmax_layer_gpu; l.output_gpu = cuda_make_array(l.output, inputs*batch); l.loss_gpu = cuda_make_array(l.loss, inputs*batch); l.delta_gpu = cuda_make_array(l.delta, inputs*batch); #endif return l; } void forward_softmax_layer(const softmax_layer l, network_state net) { if(l.softmax_tree){ int i; int count = 0; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; softmax_cpu(net.input + count, group_size, l.batch, l.inputs, 1, 0, 1, l.temperature, l.output + count); count += group_size; } } else { softmax_cpu(net.input, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output); } if(net.truth && !l.noloss){ softmax_x_ent_cpu(l.batch*l.inputs, l.output, net.truth, l.delta, l.loss); l.cost[0] = sum_array(l.loss, l.batch*l.inputs); } } void backward_softmax_layer(const softmax_layer l, network_state net) { axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, net.delta, 1); } #ifdef GPU void pull_softmax_layer_output(const softmax_layer layer) { cuda_pull_array(layer.output_gpu, layer.output, layer.inputs*layer.batch); } void forward_softmax_layer_gpu(const softmax_layer l, network_state net) { if(l.softmax_tree){ softmax_tree_gpu(net.input, 1, l.batch, l.inputs, l.temperature, l.output_gpu, *l.softmax_tree); /* int i; int count = 0; for (i = 0; i < l.softmax_tree->groups; ++i) { int group_size = l.softmax_tree->group_size[i]; softmax_gpu(net.input_gpu + count, group_size, l.batch, l.inputs, 1, 0, 1, l.temperature, l.output_gpu + count); count += group_size; } */ } else { if(l.spatial){ softmax_gpu_new_api(net.input, l.c, l.batch*l.c, l.inputs/l.c, l.w*l.h, 1, l.w*l.h, 1, l.output_gpu); }else{ softmax_gpu_new_api(net.input, l.inputs/l.groups, l.batch, l.inputs, l.groups, l.inputs/l.groups, 1, l.temperature, l.output_gpu); } } if(net.truth && !l.noloss){ softmax_x_ent_gpu(l.batch*l.inputs, l.output_gpu, net.truth, l.delta_gpu, l.loss_gpu); if(l.softmax_tree){ mask_gpu_new_api(l.batch*l.inputs, l.delta_gpu, SECRET_NUM, net.truth, 0); mask_gpu_new_api(l.batch*l.inputs, l.loss_gpu, SECRET_NUM, net.truth, 0); } cuda_pull_array(l.loss_gpu, l.loss, l.batch*l.inputs); l.cost[0] = sum_array(l.loss, l.batch*l.inputs); } } void backward_softmax_layer_gpu(const softmax_layer layer, network_state state) { axpy_ongpu(layer.batch*layer.inputs, state.net.loss_scale, layer.delta_gpu, 1, state.delta, 1); } #endif // ------------------------------------- // Supervised Contrastive Learning: https://arxiv.org/pdf/2004.11362.pdf contrastive_layer make_contrastive_layer(int batch, int w, int h, int c, int classes, int inputs, layer *yolo_layer) { contrastive_layer l = { (LAYER_TYPE)0 }; l.type = CONTRASTIVE; l.batch = batch; l.inputs = inputs; l.w = w; l.h = h; l.c = c; l.temperature = 1; l.max_boxes = 0; if (yolo_layer) { l.detection = 1; l.max_boxes = yolo_layer->max_boxes; l.labels = yolo_layer->labels; // track id l.class_ids = yolo_layer->class_ids; // class_ids l.n = yolo_layer->n; // num of embeddings per cell = num of anchors l.classes = yolo_layer->classes;// num of classes classes = l.classes; l.embedding_size = l.inputs / (l.n*l.h*l.w); l.truths = yolo_layer->truths; if (l.embedding_size != yolo_layer->embedding_size) { printf(" Error: [contrastive] embedding_size=%d isn't equal to [yolo] embedding_size=%d. They should use the same [convolutional] layer \n", l.embedding_size, yolo_layer->embedding_size); getchar(); exit(0); } if (l.inputs % (l.n*l.h*l.w) != 0) { printf(" Warning: filters= number in the previous (embedding) layer isn't divisable by number of anchors %d \n", l.n); getchar(); } } else { l.detection = 0; l.labels = (int*)xcalloc(l.batch, sizeof(int)); // labels l.n = 1; // num of embeddings per cell l.classes = classes; // num of classes l.embedding_size = l.c; } l.outputs = inputs; l.loss = (float*)xcalloc(1, sizeof(float)); l.output = (float*)xcalloc(inputs * batch, sizeof(float)); l.delta = (float*)xcalloc(inputs * batch, sizeof(float)); l.cost = (float*)xcalloc(1, sizeof(float)); const size_t step = l.batch*l.n*l.h*l.w; l.cos_sim = NULL; l.exp_cos_sim = NULL; l.p_constrastive = NULL; if (!l.detection) { l.cos_sim = (float*)xcalloc(step*step, sizeof(float)); l.exp_cos_sim = (float*)xcalloc(step*step, sizeof(float)); l.p_constrastive = (float*)xcalloc(step*step, sizeof(float)); } //l.p_constrastive = (float*)xcalloc(step*step, sizeof(float)); //l.contrast_p_size = (int*)xcalloc(1, sizeof(int)); //*l.contrast_p_size = step; //l.contrast_p = (contrastive_params*)xcalloc(*l.contrast_p_size, sizeof(contrastive_params)); l.forward = forward_contrastive_layer; l.backward = backward_contrastive_layer; #ifdef GPU l.forward_gpu = forward_contrastive_layer_gpu; l.backward_gpu = backward_contrastive_layer_gpu; l.output_gpu = cuda_make_array(l.output, inputs*batch); l.delta_gpu = cuda_make_array(l.delta, inputs*batch); const int max_contr_size = (l.max_boxes*l.batch)*(l.max_boxes*l.batch) * sizeof(contrastive_params)/4; printf(" max_contr_size = %d MB \n", max_contr_size / (1024*1024)); l.contrast_p_gpu = (contrastive_params *)cuda_make_array(NULL, max_contr_size); #endif fprintf(stderr, "contrastive %4d x%4d x%4d x emb_size %4d x batch: %4d classes = %4d, step = %4d \n", w, h, l.n, l.embedding_size, batch, l.classes, step); if(l.detection) fprintf(stderr, "detection \n"); return l; } static inline float clip_value(float val, const float max_val) { if (val > max_val) { //printf("\n val = %f > max_val = %f \n", val, max_val); val = max_val; } else if (val < -max_val) { //printf("\n val = %f < -max_val = %f \n", val, -max_val); val = -max_val; } return val; } void forward_contrastive_layer(contrastive_layer l, network_state state) { if (!state.train) return; const float truth_thresh = state.net.label_smooth_eps; const int mini_batch = l.batch / l.steps; int b, n, w, h; fill_cpu(l.batch*l.inputs, 0, l.delta, 1); if (!l.detection) { for (b = 0; b < l.batch; ++b) { if (state.net.adversarial) l.labels[b] = b % 2; else l.labels[b] = b / 2; } // set labels for (b = 0; b < l.batch; ++b) { for (h = 0; h < l.h; ++h) { for (w = 0; w < l.w; ++w) { // find truth with max prob (only 1 label even if mosaic is used) float max_truth = 0; int n; for (n = 0; n < l.classes; ++n) { const float truth_prob = state.truth[b*l.classes + n]; //printf(" truth_prob = %f, ", truth_prob); //if (truth_prob > max_truth) if (truth_prob > truth_thresh) { //printf(" truth_prob = %f, max_truth = %f, n = %d; ", truth_prob, max_truth, n); max_truth = truth_prob; l.labels[b] = n; } } //printf(", l.labels[b] = %d ", l.labels[b]); } } } } //printf("\n\n"); // set pointers to features float **z = (float**)xcalloc(l.batch*l.n*l.h*l.w, sizeof(float*)); for (b = 0; b < l.batch; ++b) { for (n = 0; n < l.n; ++n) { for (h = 0; h < l.h; ++h) { for (w = 0; w < l.w; ++w) { const int z_index = b*l.n*l.h*l.w + n*l.h*l.w + h*l.w + w; if (l.labels[z_index] < 0) continue; //const int input_index = b*l.inputs + n*l.embedding_size*l.h*l.w + h*l.w + w; //float *ptr = state.input + input_index; //z[z_index] = ptr; z[z_index] = (float*)xcalloc(l.embedding_size, sizeof(float)); get_embedding(state.input, l.w, l.h, l.c, l.embedding_size, w, h, n, b, z[z_index]); } } } } int b2, n2, h2, w2; int contrast_p_index = 0; const size_t step = l.batch*l.n*l.h*l.w; size_t contrast_p_size = step; if (!l.detection) contrast_p_size = l.batch*l.batch; contrastive_params *contrast_p = (contrastive_params*)xcalloc(contrast_p_size, sizeof(contrastive_params)); float *max_sim_same = (float *)xcalloc(l.batch*l.inputs, sizeof(float)); float *max_sim_diff = (float *)xcalloc(l.batch*l.inputs, sizeof(float)); fill_cpu(l.batch*l.inputs, -10, max_sim_same, 1); fill_cpu(l.batch*l.inputs, -10, max_sim_diff, 1); // precalculate cosine similiraty for (b = 0; b < l.batch; ++b) { for (n = 0; n < l.n; ++n) { for (h = 0; h < l.h; ++h) { for (w = 0; w < l.w; ++w) { const int z_index = b*l.n*l.h*l.w + n*l.h*l.w + h*l.w + w; if (l.labels[z_index] < 0) continue; for (b2 = 0; b2 < l.batch; ++b2) { for (n2 = 0; n2 < l.n; ++n2) { for (h2 = 0; h2 < l.h; ++h2) { for (w2 = 0; w2 < l.w; ++w2) { const int z_index2 = b2*l.n*l.h*l.w + n2*l.h*l.w + h2*l.w + w2; if (l.labels[z_index2] < 0) continue; if (z_index == z_index2) continue; if (l.detection) if (l.class_ids[z_index] != l.class_ids[z_index2]) continue; const int time_step_i = b / mini_batch; const int time_step_j = b2 / mini_batch; if (time_step_i != time_step_j) continue; const size_t step = l.batch*l.n*l.h*l.w; const float sim = cosine_similarity(z[z_index], z[z_index2], l.embedding_size); const float exp_sim = expf(sim / l.temperature); if (!l.detection) { l.cos_sim[z_index*step + z_index2] = sim; l.exp_cos_sim[z_index*step + z_index2] = exp_sim; } // calc good sim if (l.labels[z_index] == l.labels[z_index2] && max_sim_same[z_index] < sim) max_sim_same[z_index] = sim; if (l.labels[z_index] != l.labels[z_index2] && max_sim_diff[z_index] < sim) max_sim_diff[z_index] = sim; //printf(" z_i = %d, z_i2 = %d, l = %d, l2 = %d, sim = %f \n", z_index, z_index2, l.labels[z_index], l.labels[z_index2], sim); contrast_p[contrast_p_index].sim = sim; contrast_p[contrast_p_index].exp_sim = exp_sim; contrast_p[contrast_p_index].i = z_index; contrast_p[contrast_p_index].j = z_index2; contrast_p[contrast_p_index].time_step_i = time_step_i; contrast_p[contrast_p_index].time_step_j = time_step_j; contrast_p_index++; //printf(" contrast_p_index = %d, contrast_p_size = %d \n", contrast_p_index, contrast_p_size); if ((contrast_p_index+1) >= contrast_p_size) { contrast_p_size = contrast_p_index + 1; //printf(" contrast_p_size = %d, z_index = %d, z_index2 = %d \n", contrast_p_size, z_index, z_index2); contrast_p = (contrastive_params*)xrealloc(contrast_p, contrast_p_size * sizeof(contrastive_params)); } if (sim > 1.001 || sim < -1.001) { printf(" sim = %f, ", sim); getchar(); } } } } } } } } } // calc contrastive accuracy int i; int good_sims = 0, all_sims = 0, same_sim = 0, diff_sim = 0; for (i = 0; i < l.batch*l.inputs; ++i) { if (max_sim_same[i] >= -1 && max_sim_diff[i] >= -1) { if (max_sim_same[i] >= -1) same_sim++; if (max_sim_diff[i] >= -1) diff_sim++; ++all_sims; //printf(" max_sim_diff[i] = %f, max_sim_same[i] = %f \n", max_sim_diff[i], max_sim_same[i]); if (max_sim_diff[i] < max_sim_same[i]) good_sims++; } } if (all_sims > 0) { *l.loss = 100 * good_sims / all_sims; } else *l.loss = -1; printf(" Contrast accuracy = %f %%, all = %d, good = %d, same = %d, diff = %d \n", *l.loss, all_sims, good_sims, same_sim, diff_sim); free(max_sim_same); free(max_sim_diff); /* // show near sim float good_contrast = 0; for (b = 0; b < l.batch; b += 2) { float same = l.cos_sim[b*l.batch + b]; float aug = l.cos_sim[b*l.batch + b + 1]; float diff = l.cos_sim[b*l.batch + b + 2]; good_contrast += (aug > diff); //printf(" l.labels[b] = %d, l.labels[b+1] = %d, l.labels[b+2] = %d, b = %d \n", l.labels[b], l.labels[b + 1], l.labels[b + 2], b); //printf(" same = %f, aug = %f, diff = %f, (aug > diff) = %d \n", same, aug, diff, (aug > diff)); } *l.loss = 100 * good_contrast / (l.batch / 2); printf(" Contrast accuracy = %f %% \n", *l.loss); */ /* // precalculate P_contrastive for (b = 0; b < l.batch; ++b) { int b2; for (b2 = 0; b2 < l.batch; ++b2) { if (b != b2) { const float P = P_constrastive(b, b2, l.labels, l.batch, z, l.embedding_size, l.temperature, l.cos_sim); l.p_constrastive[b*l.batch + b2] = P; if (P > 1 || P < -1) { printf(" p = %f, ", P); getchar(); } } } } */ const size_t contr_size = contrast_p_index; if (l.detection) { #ifdef GPU const int max_contr_size = (l.max_boxes*l.batch)*(l.max_boxes*l.batch); if (max_contr_size < contr_size) { printf(" Error: too large number of bboxes: contr_size = %d > max_contr_size = %d \n", contr_size, max_contr_size); exit(0); } int *labels = NULL; if (contr_size > 2) { cuda_push_array((float *)l.contrast_p_gpu, (float *)contrast_p, contr_size * sizeof(contrastive_params) / 4); P_constrastive_f_det_gpu(labels, l.embedding_size, l.temperature, l.contrast_p_gpu, contr_size); cuda_pull_array((float *)l.contrast_p_gpu, (float *)contrast_p, contr_size * sizeof(contrastive_params) / 4); } #else // GPU int k; //#pragma omp parallel for for (k = 0; k < contr_size; ++k) { contrast_p[k].P = P_constrastive_f_det(k, l.labels, z, l.embedding_size, l.temperature, contrast_p, contr_size); } #endif // GPU } else { // precalculate P-contrastive for (b = 0; b < l.batch; ++b) { for (n = 0; n < l.n; ++n) { for (h = 0; h < l.h; ++h) { for (w = 0; w < l.w; ++w) { const int z_index = b*l.n*l.h*l.w + n*l.h*l.w + h*l.w + w; if (l.labels[z_index] < 0) continue; for (b2 = 0; b2 < l.batch; ++b2) { for (n2 = 0; n2 < l.n; ++n2) { for (h2 = 0; h2 < l.h; ++h2) { for (w2 = 0; w2 < l.w; ++w2) { const int z_index2 = b2*l.n*l.h*l.w + n2*l.h*l.w + h2*l.w + w2; if (l.labels[z_index2] < 0) continue; if (z_index == z_index2) continue; if (l.detection) if (l.class_ids[z_index] != l.class_ids[z_index2]) continue; const int time_step_i = b / mini_batch; const int time_step_j = b2 / mini_batch; if (time_step_i != time_step_j) continue; const size_t step = l.batch*l.n*l.h*l.w; float P = -10; if (l.detection) { P = P_constrastive_f(z_index, z_index2, l.labels, z, l.embedding_size, l.temperature, contrast_p, contr_size); } else { P = P_constrastive(z_index, z_index2, l.labels, step, z, l.embedding_size, l.temperature, l.cos_sim, l.exp_cos_sim); l.p_constrastive[z_index*step + z_index2] = P; } int q; for (q = 0; q < contr_size; ++q) if (contrast_p[q].i == z_index && contrast_p[q].j == z_index2) { contrast_p[q].P = P; break; } //if (q == contr_size) getchar(); //if (P > 1 || P < -1) { // printf(" p = %f, z_index = %d, z_index2 = %d ", P, z_index, z_index2); getchar(); //} } } } } } } } } } // calc deltas #pragma omp parallel for for (b = 0; b < l.batch; ++b) { for (n = 0; n < l.n; ++n) { for (h = 0; h < l.h; ++h) { for (w = 0; w < l.w; ++w) { const int z_index = b*l.n*l.h*l.w + n*l.h*l.w + h*l.w + w; const size_t step = l.batch*l.n*l.h*l.w; if (l.labels[z_index] < 0) continue; const int delta_index = b*l.embedding_size*l.n*l.h*l.w + n*l.embedding_size*l.h*l.w + h*l.w + w; const int wh = l.w*l.h; if (l.detection) { // detector // positive grad_contrastive_loss_positive_f(z_index, l.class_ids, l.labels, step, z, l.embedding_size, l.temperature, l.delta + delta_index, wh, contrast_p, contr_size); // negative grad_contrastive_loss_negative_f(z_index, l.class_ids, l.labels, step, z, l.embedding_size, l.temperature, l.delta + delta_index, wh, contrast_p, contr_size, l.contrastive_neg_max); } else { // classifier // positive grad_contrastive_loss_positive(z_index, l.labels, step, z, l.embedding_size, l.temperature, l.cos_sim, l.p_constrastive, l.delta + delta_index, wh); // negative grad_contrastive_loss_negative(z_index, l.labels, step, z, l.embedding_size, l.temperature, l.cos_sim, l.p_constrastive, l.delta + delta_index, wh); } } } } } scal_cpu(l.inputs * l.batch, l.cls_normalizer, l.delta, 1); for (i = 0; i < l.inputs * l.batch; ++i) { l.delta[i] = clip_value(l.delta[i], l.max_delta); } *(l.cost) = pow(mag_array(l.delta, l.inputs * l.batch), 2); if (state.net.adversarial) { printf(" adversarial contrastive loss = %f \n\n", *(l.cost)); } else { printf(" contrastive loss = %f \n\n", *(l.cost)); } for (b = 0; b < l.batch; ++b) { for (n = 0; n < l.n; ++n) { for (h = 0; h < l.h; ++h) { for (w = 0; w < l.w; ++w) { const int z_index = b*l.n*l.h*l.w + n*l.h*l.w + h*l.w + w; //if (l.labels[z_index] < 0) continue; if (z[z_index]) free(z[z_index]); } } } } free(contrast_p); free(z); } void backward_contrastive_layer(contrastive_layer l, network_state state) { axpy_cpu(l.inputs*l.batch, 1, l.delta, 1, state.delta, 1); } #ifdef GPU void pull_contrastive_layer_output(const contrastive_layer l) { cuda_pull_array(l.output_gpu, l.output, l.inputs*l.batch); } void push_contrastive_layer_output(const contrastive_layer l) { cuda_push_array(l.delta_gpu, l.delta, l.inputs*l.batch); } void forward_contrastive_layer_gpu(contrastive_layer l, network_state state) { simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu); if (!state.train) return; float *in_cpu = (float *)xcalloc(l.batch*l.inputs, sizeof(float)); cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs); memcpy(in_cpu, l.output, l.batch*l.outputs * sizeof(float)); float *truth_cpu = 0; if (state.truth) { int num_truth = l.batch*l.classes; if (l.detection) num_truth = l.batch*l.truths; truth_cpu = (float *)xcalloc(num_truth, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, num_truth); } network_state cpu_state = state; cpu_state.net = state.net; cpu_state.index = state.index; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_contrastive_layer(l, cpu_state); cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs); free(in_cpu); if (cpu_state.truth) free(cpu_state.truth); } void backward_contrastive_layer_gpu(contrastive_layer layer, network_state state) { axpy_ongpu(layer.batch*layer.inputs, state.net.loss_scale, layer.delta_gpu, 1, state.delta, 1); } #endif