#include "blas.h" #include "utils.h" #include #include #include #include #include #include void reorg_cpu(float *x, int out_w, int out_h, int out_c, int batch, int stride, int forward, float *out) { int b,i,j,k; int in_c = out_c/(stride*stride); //printf("\n out_c = %d, out_w = %d, out_h = %d, stride = %d, forward = %d \n", out_c, out_w, out_h, stride, forward); //printf(" in_c = %d, in_w = %d, in_h = %d \n", in_c, out_w*stride, out_h*stride); for(b = 0; b < batch; ++b){ for(k = 0; k < out_c; ++k){ for(j = 0; j < out_h; ++j){ for(i = 0; i < out_w; ++i){ int in_index = i + out_w*(j + out_h*(k + out_c*b)); int c2 = k % in_c; int offset = k / in_c; int w2 = i*stride + offset % stride; int h2 = j*stride + offset / stride; int out_index = w2 + out_w*stride*(h2 + out_h*stride*(c2 + in_c*b)); if(forward) out[out_index] = x[in_index]; // used by default for forward (i.e. forward = 0) else out[in_index] = x[out_index]; } } } } } void flatten(float *x, int size, int layers, int batch, int forward) { float* swap = (float*)xcalloc(size * layers * batch, sizeof(float)); int i,c,b; for(b = 0; b < batch; ++b){ for(c = 0; c < layers; ++c){ for(i = 0; i < size; ++i){ int i1 = b*layers*size + c*size + i; int i2 = b*layers*size + i*layers + c; if (forward) swap[i2] = x[i1]; else swap[i1] = x[i2]; } } } memcpy(x, swap, size*layers*batch*sizeof(float)); free(swap); } void weighted_sum_cpu(float *a, float *b, float *s, int n, float *c) { int i; for(i = 0; i < n; ++i){ c[i] = s[i]*a[i] + (1-s[i])*(b ? b[i] : 0); } } void weighted_delta_cpu(float *a, float *b, float *s, float *da, float *db, float *ds, int n, float *dc) { int i; for(i = 0; i < n; ++i){ if(da) da[i] += dc[i] * s[i]; if(db) db[i] += dc[i] * (1-s[i]); ds[i] += dc[i] * (a[i] - b[i]); } } static float relu(float src) { if (src > 0) return src; return 0; } void shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_output, float *out, float *in, float *weights, int nweights, WEIGHTS_NORMALIZATION_T weights_normalization) { // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) int step = 0; if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 int id; #pragma omp parallel for for (id = 0; id < size; ++id) { int src_id = id; const int src_i = src_id % src_outputs; src_id /= src_outputs; int src_b = src_id; float sum = 1, max_val = -FLT_MAX; int i; if (weights && weights_normalization) { if (weights_normalization == SOFTMAX_NORMALIZATION) { for (i = 0; i < (n + 1); ++i) { const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] float w = weights[weights_index]; if (max_val < w) max_val = w; } } const float eps = 0.0001; sum = eps; for (i = 0; i < (n + 1); ++i) { const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] const float w = weights[weights_index]; if (weights_normalization == RELU_NORMALIZATION) sum += relu(w); else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); } } if (weights) { float w = weights[src_i / step]; if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; out[id] = in[id] * w; // [0 or c or (c, h ,w)] } else out[id] = in[id]; // layers for (i = 0; i < n; ++i) { int add_outputs = outputs_of_layers[i]; if (src_i < add_outputs) { int add_index = add_outputs*src_b + src_i; int out_index = id; float *add = layers_output[i]; if (weights) { const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] float w = weights[weights_index]; if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; out[out_index] += add[add_index] * w; // [0 or c or (c, h ,w)] } else out[out_index] += add[add_index]; } } } } void backward_shortcut_multilayer_cpu(int size, int src_outputs, int batch, int n, int *outputs_of_layers, float **layers_delta, float *delta_out, float *delta_in, float *weights, float *weight_updates, int nweights, float *in, float **layers_output, WEIGHTS_NORMALIZATION_T weights_normalization) { // nweights - l.n or l.n*l.c or (l.n*l.c*l.h*l.w) const int layer_step = nweights / (n + 1); // 1 or l.c or (l.c * l.h * l.w) int step = 0; if (nweights > 0) step = src_outputs / layer_step; // (l.c * l.h * l.w) or (l.w*l.h) or 1 int id; #pragma omp parallel for for (id = 0; id < size; ++id) { int src_id = id; int src_i = src_id % src_outputs; src_id /= src_outputs; int src_b = src_id; float grad = 1, sum = 1, max_val = -FLT_MAX;; int i; if (weights && weights_normalization) { if (weights_normalization == SOFTMAX_NORMALIZATION) { for (i = 0; i < (n + 1); ++i) { const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] float w = weights[weights_index]; if (max_val < w) max_val = w; } } const float eps = 0.0001; sum = eps; for (i = 0; i < (n + 1); ++i) { const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] const float w = weights[weights_index]; if (weights_normalization == RELU_NORMALIZATION) sum += relu(w); else if (weights_normalization == SOFTMAX_NORMALIZATION) sum += expf(w - max_val); } /* grad = 0; for (i = 0; i < (n + 1); ++i) { const int weights_index = src_i / step + i*layer_step; // [0 or c or (c, h ,w)] const float delta_w = delta_in[id] * in[id]; const float w = weights[weights_index]; if (weights_normalization == RELU_NORMALIZATION) grad += delta_w * relu(w) / sum; else if (weights_normalization == SOFTMAX_NORMALIZATION) grad += delta_w * expf(w - max_val) / sum; } */ } if (weights) { float w = weights[src_i / step]; if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; delta_out[id] += delta_in[id] * w; // [0 or c or (c, h ,w)] weight_updates[src_i / step] += delta_in[id] * in[id] * grad; } else delta_out[id] += delta_in[id]; // layers for (i = 0; i < n; ++i) { int add_outputs = outputs_of_layers[i]; if (src_i < add_outputs) { int add_index = add_outputs*src_b + src_i; int out_index = id; float *layer_delta = layers_delta[i]; if (weights) { float *add = layers_output[i]; const int weights_index = src_i / step + (i + 1)*layer_step; // [0 or c or (c, h ,w)] float w = weights[weights_index]; if (weights_normalization == RELU_NORMALIZATION) w = relu(w) / sum; else if (weights_normalization == SOFTMAX_NORMALIZATION) w = expf(w - max_val) / sum; layer_delta[add_index] += delta_in[id] * w; // [0 or c or (c, h ,w)] weight_updates[weights_index] += delta_in[id] * add[add_index] * grad; } else layer_delta[add_index] += delta_in[id]; } } } } void shortcut_cpu(int batch, int w1, int h1, int c1, float *add, int w2, int h2, int c2, float *out) { int stride = w1/w2; int sample = w2/w1; assert(stride == h1/h2); assert(sample == h2/h1); if(stride < 1) stride = 1; if(sample < 1) sample = 1; int minw = (w1 < w2) ? w1 : w2; int minh = (h1 < h2) ? h1 : h2; int minc = (c1 < c2) ? c1 : c2; int i,j,k,b; for(b = 0; b < batch; ++b){ for(k = 0; k < minc; ++k){ for(j = 0; j < minh; ++j){ for(i = 0; i < minw; ++i){ int out_index = i*sample + w2*(j*sample + h2*(k + c2*b)); int add_index = i*stride + w1*(j*stride + h1*(k + c1*b)); out[out_index] += add[add_index]; } } } } } void mean_cpu(float *x, int batch, int filters, int spatial, float *mean) { float scale = 1./(batch * spatial); int i,j,k; for(i = 0; i < filters; ++i){ mean[i] = 0; for(j = 0; j < batch; ++j){ for(k = 0; k < spatial; ++k){ int index = j*filters*spatial + i*spatial + k; mean[i] += x[index]; } } mean[i] *= scale; } } void variance_cpu(float *x, float *mean, int batch, int filters, int spatial, float *variance) { float scale = 1./(batch * spatial - 1); int i,j,k; for(i = 0; i < filters; ++i){ variance[i] = 0; for(j = 0; j < batch; ++j){ for(k = 0; k < spatial; ++k){ int index = j*filters*spatial + i*spatial + k; variance[i] += pow((x[index] - mean[i]), 2); } } variance[i] *= scale; } } void normalize_cpu(float *x, float *mean, float *variance, int batch, int filters, int spatial) { int b, f, i; for(b = 0; b < batch; ++b){ for(f = 0; f < filters; ++f){ for(i = 0; i < spatial; ++i){ int index = b*filters*spatial + f*spatial + i; x[index] = (x[index] - mean[f])/(sqrt(variance[f] + .00001f)); } } } } void const_cpu(int N, float ALPHA, float *X, int INCX) { int i; for(i = 0; i < N; ++i) X[i*INCX] = ALPHA; } void mul_cpu(int N, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] *= X[i*INCX]; } void pow_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] = pow(X[i*INCX], ALPHA); } void axpy_cpu(int N, float ALPHA, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] += ALPHA*X[i*INCX]; } void scal_cpu(int N, float ALPHA, float *X, int INCX) { int i; for(i = 0; i < N; ++i) X[i*INCX] *= ALPHA; } void scal_add_cpu(int N, float ALPHA, float BETA, float *X, int INCX) { int i; for (i = 0; i < N; ++i) X[i*INCX] = X[i*INCX] * ALPHA + BETA; } void fill_cpu(int N, float ALPHA, float *X, int INCX) { int i; if (INCX == 1 && ALPHA == 0) { memset(X, 0, N * sizeof(float)); } else { for (i = 0; i < N; ++i) X[i*INCX] = ALPHA; } } void deinter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) { int i, j; int index = 0; for(j = 0; j < B; ++j) { for(i = 0; i < NX; ++i){ if(X) X[j*NX + i] += OUT[index]; ++index; } for(i = 0; i < NY; ++i){ if(Y) Y[j*NY + i] += OUT[index]; ++index; } } } void inter_cpu(int NX, float *X, int NY, float *Y, int B, float *OUT) { int i, j; int index = 0; for(j = 0; j < B; ++j) { for(i = 0; i < NX; ++i){ OUT[index++] = X[j*NX + i]; } for(i = 0; i < NY; ++i){ OUT[index++] = Y[j*NY + i]; } } } void copy_cpu(int N, float *X, int INCX, float *Y, int INCY) { int i; for(i = 0; i < N; ++i) Y[i*INCY] = X[i*INCX]; } void mult_add_into_cpu(int N, float *X, float *Y, float *Z) { int i; for(i = 0; i < N; ++i) Z[i] += X[i]*Y[i]; } void smooth_l1_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float diff = truth[i] - pred[i]; float abs_val = fabs(diff); if(abs_val < 1) { error[i] = diff * diff; delta[i] = diff; } else { error[i] = 2*abs_val - 1; delta[i] = (diff > 0) ? 1 : -1; } } } void l1_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float diff = truth[i] - pred[i]; error[i] = fabs(diff); delta[i] = diff > 0 ? 1 : -1; } } void softmax_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float t = truth[i]; float p = pred[i]; error[i] = (t) ? -log(p) : 0; delta[i] = t-p; } } void logistic_x_ent_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float t = truth[i]; float p = pred[i]; error[i] = -t*log(p) - (1-t)*log(1-p); delta[i] = t-p; } } void l2_cpu(int n, float *pred, float *truth, float *delta, float *error) { int i; for(i = 0; i < n; ++i){ float diff = truth[i] - pred[i]; error[i] = diff * diff; delta[i] = diff; } } float dot_cpu(int N, float *X, int INCX, float *Y, int INCY) { int i; float dot = 0; for(i = 0; i < N; ++i) dot += X[i*INCX] * Y[i*INCY]; return dot; } void softmax(float *input, int n, float temp, float *output, int stride) { int i; float sum = 0; float largest = -FLT_MAX; for(i = 0; i < n; ++i){ if(input[i*stride] > largest) largest = input[i*stride]; } for(i = 0; i < n; ++i){ float e = exp(input[i*stride]/temp - largest/temp); sum += e; output[i*stride] = e; } for(i = 0; i < n; ++i){ output[i*stride] /= sum; } } void softmax_cpu(float *input, int n, int batch, int batch_offset, int groups, int group_offset, int stride, float temp, float *output) { int g, b; for(b = 0; b < batch; ++b){ for(g = 0; g < groups; ++g){ softmax(input + b*batch_offset + g*group_offset, n, temp, output + b*batch_offset + g*group_offset, stride); } } } void upsample_cpu(float *in, int w, int h, int c, int batch, int stride, int forward, float scale, float *out) { int i, j, k, b; for (b = 0; b < batch; ++b) { for (k = 0; k < c; ++k) { for (j = 0; j < h*stride; ++j) { for (i = 0; i < w*stride; ++i) { int in_index = b*w*h*c + k*w*h + (j / stride)*w + i / stride; int out_index = b*w*h*c*stride*stride + k*w*h*stride*stride + j*w*stride + i; if (forward) out[out_index] = scale*in[in_index]; else in[in_index] += scale*out[out_index]; } } } } } void constrain_cpu(int size, float ALPHA, float *X) { int i; for (i = 0; i < size; ++i) { X[i] = fminf(ALPHA, fmaxf(-ALPHA, X[i])); } } void fix_nan_and_inf_cpu(float *input, size_t size) { int i; for (i = 0; i < size; ++i) { float val = input[i]; if (isnan(val) || isinf(val)) input[i] = 1.0f / i; // pseudo random value } } void get_embedding(float *src, int src_w, int src_h, int src_c, int embedding_size, int cur_w, int cur_h, int cur_n, int cur_b, float *dst) { int i; for (i = 0; i < embedding_size; ++i) { const int src_index = cur_b*(src_c*src_h*src_w) + cur_n*(embedding_size*src_h*src_w) + i*src_h*src_w + cur_h*(src_w) + cur_w; const float val = src[src_index]; dst[i] = val; //printf(" val = %f, ", val); } } // Euclidean_norm float math_vector_length(float *A, unsigned int feature_size) { float sum = 0; int i; for (i = 0; i < feature_size; ++i) { sum += A[i] * A[i]; } float vector_length = sqrtf(sum); return vector_length; } float cosine_similarity(float *A, float *B, unsigned int feature_size) { float mul = 0.0, d_a = 0.0, d_b = 0.0; int i; for(i = 0; i < feature_size; ++i) { mul += A[i] * B[i]; d_a += A[i] * A[i]; d_b += B[i] * B[i]; } float similarity; float divider = sqrtf(d_a) * sqrtf(d_b); if (divider > 0) similarity = mul / divider; else similarity = 0; return similarity; } int get_sim_P_index(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) { size_t z; for (z = 0; z < contrast_p_size; ++z) { if (contrast_p[z].i == i && contrast_p[z].j == j) break; } if (z == contrast_p_size) { return -1; // not found } return z; // found } int check_sim(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) { size_t z; for (z = 0; z < contrast_p_size; ++z) { if (contrast_p[z].i == i && contrast_p[z].j == j) break; } if (z == contrast_p_size) { return 0; // not found } return 1; // found } float find_sim(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) { size_t z; for (z = 0; z < contrast_p_size; ++z) { if (contrast_p[z].i == i && contrast_p[z].j == j) break; } if (z == contrast_p_size) { printf(" Error: find_sim(): sim isn't found: i = %d, j = %d, z = %d \n", i, j, z); getchar(); } return contrast_p[z].sim; } float find_P_constrastive(size_t i, size_t j, contrastive_params *contrast_p, int contrast_p_size) { size_t z; for (z = 0; z < contrast_p_size; ++z) { if (contrast_p[z].i == i && contrast_p[z].j == j) break; } if (z == contrast_p_size) { printf(" Error: find_P_constrastive(): P isn't found: i = %d, j = %d, z = %d \n", i, j, z); getchar(); } return contrast_p[z].P; } // num_of_samples = 2 * loaded_images = mini_batch_size float P_constrastive_f_det(size_t il, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size) { const float sim = contrast_p[il].sim; const size_t i = contrast_p[il].i; const size_t j = contrast_p[il].j; const float numerator = expf(sim / temperature); float denominator = 0; int k; for (k = 0; k < contrast_p_size; ++k) { contrastive_params cp = contrast_p[k]; //if (k != i && labels[k] != labels[i]) { //if (k != i) { if (cp.i != i && cp.j == j) { //const float sim_den = cp.sim; ////const float sim_den = find_sim(k, l, contrast_p, contrast_p_size); // cosine_similarity(z[k], z[l], feature_size); //denominator += expf(sim_den / temperature); denominator += cp.exp_sim; } } float result = 0.9999; if (denominator != 0) result = numerator / denominator; if (result > 1) result = 0.9999; return result; } // num_of_samples = 2 * loaded_images = mini_batch_size float P_constrastive_f(size_t i, size_t l, int *labels, float **z, unsigned int feature_size, float temperature, contrastive_params *contrast_p, int contrast_p_size) { if (i == l) { fprintf(stderr, " Error: in P_constrastive must be i != l, while i = %d, l = %d \n", i, l); getchar(); } const float sim = find_sim(i, l, contrast_p, contrast_p_size); // cosine_similarity(z[i], z[l], feature_size); const float numerator = expf(sim / temperature); float denominator = 0; int k; for (k = 0; k < contrast_p_size; ++k) { contrastive_params cp = contrast_p[k]; //if (k != i && labels[k] != labels[i]) { //if (k != i) { if (cp.i != i && cp.j == l) { //const float sim_den = cp.sim; ////const float sim_den = find_sim(k, l, contrast_p, contrast_p_size); // cosine_similarity(z[k], z[l], feature_size); //denominator += expf(sim_den / temperature); denominator += cp.exp_sim; } } float result = 0.9999; if (denominator != 0) result = numerator / denominator; if (result > 1) result = 0.9999; return result; } void grad_contrastive_loss_positive_f(size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size) { const float vec_len = math_vector_length(z[i], feature_size); size_t j; float N = 0; for (j = 0; j < num_of_samples; ++j) { if (labels[i] == labels[j] && labels[i] >= 0) N++; } if (N == 0 || temperature == 0 || vec_len == 0) { fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f, labels[i] = %d \n", N, temperature, vec_len, labels[i]); getchar(); return; } const float mult = 1 / ((N - 1) * temperature * vec_len); for (j = 0; j < num_of_samples; ++j) { //if (i != j && (i/2) == (j/2)) { if (i != j && labels[i] == labels[j] && labels[i] >= 0) { //printf(" i = %d, j = %d, num_of_samples = %d, labels[i] = %d, labels[j] = %d \n", // i, j, num_of_samples, labels[i], labels[j]); const int sim_P_i = get_sim_P_index(i, j, contrast_p, contrast_p_size); if (sim_P_i < 0) continue; const float sim = contrast_p[sim_P_i].sim; const float P = contrast_p[sim_P_i].P; //if (!check_sim(i, j, contrast_p, contrast_p_size)) continue; //const float sim = find_sim(i, j, contrast_p, contrast_p_size); //cos_sim[i*num_of_samples + j]; // cosine_similarity(z[i], z[j], feature_size); //const float P = find_P_constrastive(i, j, contrast_p, contrast_p_size); //p_constrastive[i*num_of_samples + j]; // P_constrastive(i, j, labels, num_of_samples, z, feature_size, temperature, cos_sim); //const float custom_pos_mult = 1 - sim; int m; //const float d = mult*(sim * z[i][m] - z[j][m]) * (1 - P); // 1 for (m = 0; m < feature_size; ++m) { //const float d = mult*(sim * z[j][m] - z[j][m]) * (1 - P); // my //const float d = mult*(sim * z[i][m] + sim * z[j][m] - z[j][m]) *(1 - P); // 1+2 const float d = mult*(sim * z[i][m] - z[j][m]) *(1 - P); // 1 (70%) //const float d = mult*(sim * z[j][m] - z[j][m]) * (1 - P); // 2 // printf(" pos: z[j][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[j][m], z[i][m], d, sim); const int out_i = m * wh; delta[out_i] -= d; } } } } void grad_contrastive_loss_negative_f(size_t i, int *class_ids, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *delta, int wh, contrastive_params *contrast_p, int contrast_p_size, int neg_max) { const float vec_len = math_vector_length(z[i], feature_size); size_t j; float N = 0; for (j = 0; j < num_of_samples; ++j) { if (labels[i] == labels[j] && labels[i] >= 0) N++; } if (N == 0 || temperature == 0 || vec_len == 0) { fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f, labels[i] = %d \n", N, temperature, vec_len, labels[i]); getchar(); return; } const float mult = 1 / ((N - 1) * temperature * vec_len); int neg_counter = 0; for (j = 0; j < num_of_samples; ++j) { //if (i != j && (i/2) == (j/2)) { if (labels[i] >= 0 && labels[i] == labels[j] && i != j) { size_t k; for (k = 0; k < num_of_samples; ++k) { //if (k != i && k != j && labels[k] != labels[i]) { if (k != i && k != j && labels[k] != labels[i] && class_ids[j] == class_ids[k]) { neg_counter++; const int sim_P_i = get_sim_P_index(i, k, contrast_p, contrast_p_size); if (sim_P_i < 0) continue; const float sim = contrast_p[sim_P_i].sim; const float P = contrast_p[sim_P_i].P; //if (!check_sim(i, k, contrast_p, contrast_p_size)) continue; //const float sim = find_sim(i, k, contrast_p, contrast_p_size); //cos_sim[i*num_of_samples + k]; // cosine_similarity(z[i], z[k], feature_size); //const float P = find_P_constrastive(i, k, contrast_p, contrast_p_size); //p_constrastive[i*num_of_samples + k]; // P_constrastive(i, k, labels, num_of_samples, z, feature_size, temperature, cos_sim); //const float custom_pos_mult = 1 + sim; int m; //const float d = mult*(z[k][m] + sim * z[i][m]) * P; // my1 for (m = 0; m < feature_size; ++m) { //const float d = mult*(z[k][m] + sim * z[i][m]) * P; // 1 (70%) //const float d = mult*(z[k][m] - sim * z[k][m] - sim * z[i][m]) * P; // 1+2 const float d = mult*(z[k][m] - sim * z[i][m]) * P; // 1 (70%) //const float d = mult*(z[k][m] - sim * z[k][m]) * P; // 2 //printf(" neg: z[k][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[k][m], z[i][m], d, sim); const int out_i = m * wh; delta[out_i] -= d; } if (neg_counter >= neg_max) return; } } } } } // num_of_samples = 2 * loaded_images = mini_batch_size float P_constrastive(size_t i, size_t l, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *exp_cos_sim) { if (i == l) { fprintf(stderr, " Error: in P_constrastive must be i != l, while i = %d, l = %d \n", i, l); getchar(); } //const float sim = cos_sim[i*num_of_samples + l]; // cosine_similarity(z[i], z[l], feature_size); //const float numerator = expf(sim / temperature); const float numerator = exp_cos_sim[i*num_of_samples + l]; float denominator = 0; int k; for (k = 0; k < num_of_samples; ++k) { //if (k != i && labels[k] != labels[i]) { if (k != i) { //const float sim_den = cos_sim[k*num_of_samples + l]; // cosine_similarity(z[k], z[l], feature_size); //denominator += expf(sim_den / temperature); denominator += exp_cos_sim[k*num_of_samples + l]; } } float result = numerator / denominator; return result; } // i - id of the current sample in mini_batch // labels[num_of_samples] - array with class_id for each sample in the current mini_batch // z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample) // delta[feature_size] - array with deltas for backpropagation // temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning void grad_contrastive_loss_positive(size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh) { const float vec_len = math_vector_length(z[i], feature_size); size_t j; float N = 0; for (j = 0; j < num_of_samples; ++j) { if (labels[i] == labels[j]) N++; } if (N == 0 || temperature == 0 || vec_len == 0) { fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f \n", N, temperature, vec_len); getchar(); } const float mult = 1 / ((N - 1) * temperature * vec_len); for (j = 0; j < num_of_samples; ++j) { //if (i != j && (i/2) == (j/2)) { if (i != j && labels[i] == labels[j]) { //printf(" i = %d, j = %d, num_of_samples = %d, labels[i] = %d, labels[j] = %d \n", // i, j, num_of_samples, labels[i], labels[j]); const float sim = cos_sim[i*num_of_samples + j]; // cosine_similarity(z[i], z[j], feature_size); const float P = p_constrastive[i*num_of_samples + j]; // P_constrastive(i, j, labels, num_of_samples, z, feature_size, temperature, cos_sim); //const float custom_pos_mult = 1 - sim; int m; for (m = 0; m < feature_size; ++m) { const float d = mult*(sim * z[i][m] - z[j][m]) * (1 - P); // good //const float d = mult*(sim * z[j][m] - z[j][m]) * (1 - P); // bad // printf(" pos: z[j][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[j][m], z[i][m], d, sim); const int out_i = m * wh; delta[out_i] -= d; } } } } // i - id of the current sample in mini_batch // labels[num_of_samples] - array with class_id for each sample in the current mini_batch // z[feature_size][num_of_samples] - array of arrays with contrastive features (output of conv-layer, f.e. 128 floats for each sample) // delta[feature_size] - array with deltas for backpropagation // temperature - scalar temperature param (temperature > 0), f.e. temperature = 0.07: Supervised Contrastive Learning void grad_contrastive_loss_negative(size_t i, int *labels, size_t num_of_samples, float **z, unsigned int feature_size, float temperature, float *cos_sim, float *p_constrastive, float *delta, int wh) { const float vec_len = math_vector_length(z[i], feature_size); size_t j; float N = 0; for (j = 0; j < num_of_samples; ++j) { if (labels[i] == labels[j]) N++; } if (N == 0 || temperature == 0 || vec_len == 0) { fprintf(stderr, " Error: N == 0 || temperature == 0 || vec_len == 0. N=%f, temperature=%f, vec_len=%f \n", N, temperature, vec_len); getchar(); } const float mult = 1 / ((N - 1) * temperature * vec_len); for (j = 0; j < num_of_samples; ++j) { //if (i != j && (i/2) == (j/2)) { if (i != j && labels[i] == labels[j]) { size_t k; for (k = 0; k < num_of_samples; ++k) { //if (k != i && k != j && labels[k] != labels[i]) { if (k != i && k != j && labels[k] >= 0) { const float sim = cos_sim[i*num_of_samples + k]; // cosine_similarity(z[i], z[k], feature_size); const float P = p_constrastive[i*num_of_samples + k]; // P_constrastive(i, k, labels, num_of_samples, z, feature_size, temperature, cos_sim); //const float custom_pos_mult = 1 + sim; int m; for (m = 0; m < feature_size; ++m) { const float d = mult*(z[k][m] - sim * z[i][m]) * P; // good //const float d = mult*(z[k][m] - sim * z[k][m]) * P; // bad //printf(" neg: z[k][m] = %f, z[i][m] = %f, d = %f, sim = %f \n", z[k][m], z[i][m], d, sim); const int out_i = m * wh; delta[out_i] -= d; } } } } } }