#include "lstm_layer.h" #include "connected_layer.h" #include "utils.h" #include "dark_cuda.h" #include "blas.h" #include "gemm.h" #include #include #include #include static void increment_layer(layer *l, int steps) { int num = l->outputs*l->batch*steps; l->output += num; l->delta += num; l->x += num; l->x_norm += num; #ifdef GPU l->output_gpu += num; l->delta_gpu += num; l->x_gpu += num; l->x_norm_gpu += num; #endif } layer make_lstm_layer(int batch, int inputs, int outputs, int steps, int batch_normalize) { fprintf(stderr, "LSTM Layer: %d inputs, %d outputs\n", inputs, outputs); batch = batch / steps; layer l = { (LAYER_TYPE)0 }; l.batch = batch; l.type = LSTM; l.steps = steps; l.inputs = inputs; l.out_w = 1; l.out_h = 1; l.out_c = outputs; l.uf = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.uf) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); l.uf->batch = batch; if (l.workspace_size < l.uf->workspace_size) l.workspace_size = l.uf->workspace_size; l.ui = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.ui) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); l.ui->batch = batch; if (l.workspace_size < l.ui->workspace_size) l.workspace_size = l.ui->workspace_size; l.ug = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.ug) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); l.ug->batch = batch; if (l.workspace_size < l.ug->workspace_size) l.workspace_size = l.ug->workspace_size; l.uo = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.uo) = make_connected_layer(batch, steps, inputs, outputs, LINEAR, batch_normalize); l.uo->batch = batch; if (l.workspace_size < l.uo->workspace_size) l.workspace_size = l.uo->workspace_size; l.wf = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.wf) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); l.wf->batch = batch; if (l.workspace_size < l.wf->workspace_size) l.workspace_size = l.wf->workspace_size; l.wi = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.wi) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); l.wi->batch = batch; if (l.workspace_size < l.wi->workspace_size) l.workspace_size = l.wi->workspace_size; l.wg = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.wg) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); l.wg->batch = batch; if (l.workspace_size < l.wg->workspace_size) l.workspace_size = l.wg->workspace_size; l.wo = (layer*)xcalloc(1, sizeof(layer)); fprintf(stderr, "\t\t"); *(l.wo) = make_connected_layer(batch, steps, outputs, outputs, LINEAR, batch_normalize); l.wo->batch = batch; if (l.workspace_size < l.wo->workspace_size) l.workspace_size = l.wo->workspace_size; l.batch_normalize = batch_normalize; l.outputs = outputs; l.output = (float*)xcalloc(outputs * batch * steps, sizeof(float)); l.state = (float*)xcalloc(outputs * batch, sizeof(float)); l.forward = forward_lstm_layer; l.update = update_lstm_layer; l.backward = backward_lstm_layer; l.prev_state_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.prev_cell_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.cell_cpu = (float*)xcalloc(batch*outputs*steps, sizeof(float)); l.f_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.i_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.g_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.o_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.c_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.h_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.temp_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.temp2_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.temp3_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.dc_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); l.dh_cpu = (float*)xcalloc(batch*outputs, sizeof(float)); #ifdef GPU l.forward_gpu = forward_lstm_layer_gpu; l.backward_gpu = backward_lstm_layer_gpu; l.update_gpu = update_lstm_layer_gpu; //l.state_gpu = cuda_make_array(l.state, batch*l.outputs); l.output_gpu = cuda_make_array(0, batch*outputs*steps); l.delta_gpu = cuda_make_array(0, batch*l.outputs*steps); l.prev_state_gpu = cuda_make_array(0, batch*outputs); l.prev_cell_gpu = cuda_make_array(0, batch*outputs); l.cell_gpu = cuda_make_array(0, batch*outputs*steps); l.f_gpu = cuda_make_array(0, batch*outputs); l.i_gpu = cuda_make_array(0, batch*outputs); l.g_gpu = cuda_make_array(0, batch*outputs); l.o_gpu = cuda_make_array(0, batch*outputs); l.c_gpu = cuda_make_array(0, batch*outputs); l.h_gpu = cuda_make_array(0, batch*outputs); l.temp_gpu = cuda_make_array(0, batch*outputs); l.temp2_gpu = cuda_make_array(0, batch*outputs); l.temp3_gpu = cuda_make_array(0, batch*outputs); l.dc_gpu = cuda_make_array(0, batch*outputs); l.dh_gpu = cuda_make_array(0, batch*outputs); #ifdef CUDNN /* cudnnSetTensor4dDescriptor(l.wf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wf->out_c, l.wf->out_h, l.wf->out_w); cudnnSetTensor4dDescriptor(l.wi->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wi->out_c, l.wi->out_h, l.wi->out_w); cudnnSetTensor4dDescriptor(l.wg->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wg->out_c, l.wg->out_h, l.wg->out_w); cudnnSetTensor4dDescriptor(l.wo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.wo->out_c, l.wo->out_h, l.wo->out_w); cudnnSetTensor4dDescriptor(l.uf->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uf->out_c, l.uf->out_h, l.uf->out_w); cudnnSetTensor4dDescriptor(l.ui->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ui->out_c, l.ui->out_h, l.ui->out_w); cudnnSetTensor4dDescriptor(l.ug->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.ug->out_c, l.ug->out_h, l.ug->out_w); cudnnSetTensor4dDescriptor(l.uo->dstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, batch, l.uo->out_c, l.uo->out_h, l.uo->out_w); */ #endif #endif return l; } void update_lstm_layer(layer l, int batch, float learning_rate, float momentum, float decay) { update_connected_layer(*(l.wf), batch, learning_rate, momentum, decay); update_connected_layer(*(l.wi), batch, learning_rate, momentum, decay); update_connected_layer(*(l.wg), batch, learning_rate, momentum, decay); update_connected_layer(*(l.wo), batch, learning_rate, momentum, decay); update_connected_layer(*(l.uf), batch, learning_rate, momentum, decay); update_connected_layer(*(l.ui), batch, learning_rate, momentum, decay); update_connected_layer(*(l.ug), batch, learning_rate, momentum, decay); update_connected_layer(*(l.uo), batch, learning_rate, momentum, decay); } void forward_lstm_layer(layer l, network_state state) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; int i; layer wf = *(l.wf); layer wi = *(l.wi); layer wg = *(l.wg); layer wo = *(l.wo); layer uf = *(l.uf); layer ui = *(l.ui); layer ug = *(l.ug); layer uo = *(l.uo); fill_cpu(l.outputs * l.batch * l.steps, 0, wf.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, wi.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, wg.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, wo.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, uf.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, ui.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, ug.delta, 1); fill_cpu(l.outputs * l.batch * l.steps, 0, uo.delta, 1); if (state.train) { fill_cpu(l.outputs * l.batch * l.steps, 0, l.delta, 1); } for (i = 0; i < l.steps; ++i) { s.input = l.h_cpu; forward_connected_layer(wf, s); forward_connected_layer(wi, s); forward_connected_layer(wg, s); forward_connected_layer(wo, s); s.input = state.input; forward_connected_layer(uf, s); forward_connected_layer(ui, s); forward_connected_layer(ug, s); forward_connected_layer(uo, s); copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); activate_array(l.g_cpu, l.outputs*l.batch, TANH); activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); copy_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.c_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, l.temp_cpu, 1, l.c_cpu, 1); copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.h_cpu, 1); activate_array(l.h_cpu, l.outputs*l.batch, TANH); mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.h_cpu, 1); copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.cell_cpu, 1); copy_cpu(l.outputs*l.batch, l.h_cpu, 1, l.output, 1); state.input += l.inputs*l.batch; l.output += l.outputs*l.batch; l.cell_cpu += l.outputs*l.batch; increment_layer(&wf, 1); increment_layer(&wi, 1); increment_layer(&wg, 1); increment_layer(&wo, 1); increment_layer(&uf, 1); increment_layer(&ui, 1); increment_layer(&ug, 1); increment_layer(&uo, 1); } } void backward_lstm_layer(layer l, network_state state) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; int i; layer wf = *(l.wf); layer wi = *(l.wi); layer wg = *(l.wg); layer wo = *(l.wo); layer uf = *(l.uf); layer ui = *(l.ui); layer ug = *(l.ug); layer uo = *(l.uo); increment_layer(&wf, l.steps - 1); increment_layer(&wi, l.steps - 1); increment_layer(&wg, l.steps - 1); increment_layer(&wo, l.steps - 1); increment_layer(&uf, l.steps - 1); increment_layer(&ui, l.steps - 1); increment_layer(&ug, l.steps - 1); increment_layer(&uo, l.steps - 1); state.input += l.inputs*l.batch*(l.steps - 1); if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); l.output += l.outputs*l.batch*(l.steps - 1); l.cell_cpu += l.outputs*l.batch*(l.steps - 1); l.delta += l.outputs*l.batch*(l.steps - 1); for (i = l.steps - 1; i >= 0; --i) { if (i != 0) copy_cpu(l.outputs*l.batch, l.cell_cpu - l.outputs*l.batch, 1, l.prev_cell_cpu, 1); copy_cpu(l.outputs*l.batch, l.cell_cpu, 1, l.c_cpu, 1); if (i != 0) copy_cpu(l.outputs*l.batch, l.output - l.outputs*l.batch, 1, l.prev_state_cpu, 1); copy_cpu(l.outputs*l.batch, l.output, 1, l.h_cpu, 1); l.dh_cpu = (i == 0) ? 0 : l.delta - l.outputs*l.batch; copy_cpu(l.outputs*l.batch, wf.output, 1, l.f_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, uf.output, 1, l.f_cpu, 1); copy_cpu(l.outputs*l.batch, wi.output, 1, l.i_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, ui.output, 1, l.i_cpu, 1); copy_cpu(l.outputs*l.batch, wg.output, 1, l.g_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, ug.output, 1, l.g_cpu, 1); copy_cpu(l.outputs*l.batch, wo.output, 1, l.o_cpu, 1); axpy_cpu(l.outputs*l.batch, 1, uo.output, 1, l.o_cpu, 1); activate_array(l.f_cpu, l.outputs*l.batch, LOGISTIC); activate_array(l.i_cpu, l.outputs*l.batch, LOGISTIC); activate_array(l.g_cpu, l.outputs*l.batch, TANH); activate_array(l.o_cpu, l.outputs*l.batch, LOGISTIC); copy_cpu(l.outputs*l.batch, l.delta, 1, l.temp3_cpu, 1); copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); activate_array(l.temp_cpu, l.outputs*l.batch, TANH); copy_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp2_cpu, 1); mul_cpu(l.outputs*l.batch, l.o_cpu, 1, l.temp2_cpu, 1); gradient_array(l.temp_cpu, l.outputs*l.batch, TANH, l.temp2_cpu); axpy_cpu(l.outputs*l.batch, 1, l.dc_cpu, 1, l.temp2_cpu, 1); copy_cpu(l.outputs*l.batch, l.c_cpu, 1, l.temp_cpu, 1); activate_array(l.temp_cpu, l.outputs*l.batch, TANH); mul_cpu(l.outputs*l.batch, l.temp3_cpu, 1, l.temp_cpu, 1); gradient_array(l.o_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wo.delta, 1); s.input = l.prev_state_cpu; s.delta = l.dh_cpu; backward_connected_layer(wo, s); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uo.delta, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer(uo, s); copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); mul_cpu(l.outputs*l.batch, l.i_cpu, 1, l.temp_cpu, 1); gradient_array(l.g_cpu, l.outputs*l.batch, TANH, l.temp_cpu); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wg.delta, 1); s.input = l.prev_state_cpu; s.delta = l.dh_cpu; backward_connected_layer(wg, s); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ug.delta, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer(ug, s); copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); mul_cpu(l.outputs*l.batch, l.g_cpu, 1, l.temp_cpu, 1); gradient_array(l.i_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wi.delta, 1); s.input = l.prev_state_cpu; s.delta = l.dh_cpu; backward_connected_layer(wi, s); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, ui.delta, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer(ui, s); copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); mul_cpu(l.outputs*l.batch, l.prev_cell_cpu, 1, l.temp_cpu, 1); gradient_array(l.f_cpu, l.outputs*l.batch, LOGISTIC, l.temp_cpu); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, wf.delta, 1); s.input = l.prev_state_cpu; s.delta = l.dh_cpu; backward_connected_layer(wf, s); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, uf.delta, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer(uf, s); copy_cpu(l.outputs*l.batch, l.temp2_cpu, 1, l.temp_cpu, 1); mul_cpu(l.outputs*l.batch, l.f_cpu, 1, l.temp_cpu, 1); copy_cpu(l.outputs*l.batch, l.temp_cpu, 1, l.dc_cpu, 1); state.input -= l.inputs*l.batch; if (state.delta) state.delta -= l.inputs*l.batch; l.output -= l.outputs*l.batch; l.cell_cpu -= l.outputs*l.batch; l.delta -= l.outputs*l.batch; increment_layer(&wf, -1); increment_layer(&wi, -1); increment_layer(&wg, -1); increment_layer(&wo, -1); increment_layer(&uf, -1); increment_layer(&ui, -1); increment_layer(&ug, -1); increment_layer(&uo, -1); } } #ifdef GPU void update_lstm_layer_gpu(layer l, int batch, float learning_rate, float momentum, float decay, float loss_scale) { update_connected_layer_gpu(*(l.wf), batch, learning_rate, momentum, decay, loss_scale); update_connected_layer_gpu(*(l.wi), batch, learning_rate, momentum, decay, loss_scale); update_connected_layer_gpu(*(l.wg), batch, learning_rate, momentum, decay, loss_scale); update_connected_layer_gpu(*(l.wo), batch, learning_rate, momentum, decay, loss_scale); update_connected_layer_gpu(*(l.uf), batch, learning_rate, momentum, decay, loss_scale); update_connected_layer_gpu(*(l.ui), batch, learning_rate, momentum, decay, loss_scale); update_connected_layer_gpu(*(l.ug), batch, learning_rate, momentum, decay, loss_scale); update_connected_layer_gpu(*(l.uo), batch, learning_rate, momentum, decay, loss_scale); } void forward_lstm_layer_gpu(layer l, network_state state) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; int i; layer wf = *(l.wf); layer wi = *(l.wi); layer wg = *(l.wg); layer wo = *(l.wo); layer uf = *(l.uf); layer ui = *(l.ui); layer ug = *(l.ug); layer uo = *(l.uo); fill_ongpu(l.outputs * l.batch * l.steps, 0, wf.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, wi.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, wg.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, wo.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, uf.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, ui.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, ug.delta_gpu, 1); fill_ongpu(l.outputs * l.batch * l.steps, 0, uo.delta_gpu, 1); if (state.train) { fill_ongpu(l.outputs * l.batch * l.steps, 0, l.delta_gpu, 1); } for (i = 0; i < l.steps; ++i) { s.input = l.h_gpu; forward_connected_layer_gpu(wf, s); forward_connected_layer_gpu(wi, s); forward_connected_layer_gpu(wg, s); forward_connected_layer_gpu(wo, s); s.input = state.input; forward_connected_layer_gpu(uf, s); forward_connected_layer_gpu(ui, s); forward_connected_layer_gpu(ug, s); forward_connected_layer_gpu(uo, s); copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); copy_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.c_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, l.temp_gpu, 1, l.c_gpu, 1); copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.h_gpu, 1); activate_array_ongpu(l.h_gpu, l.outputs*l.batch, TANH); mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.h_gpu, 1); copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.cell_gpu, 1); copy_ongpu(l.outputs*l.batch, l.h_gpu, 1, l.output_gpu, 1); state.input += l.inputs*l.batch; l.output_gpu += l.outputs*l.batch; l.cell_gpu += l.outputs*l.batch; increment_layer(&wf, 1); increment_layer(&wi, 1); increment_layer(&wg, 1); increment_layer(&wo, 1); increment_layer(&uf, 1); increment_layer(&ui, 1); increment_layer(&ug, 1); increment_layer(&uo, 1); } } void backward_lstm_layer_gpu(layer l, network_state state) { network_state s = { 0 }; s.train = state.train; s.workspace = state.workspace; int i; layer wf = *(l.wf); layer wi = *(l.wi); layer wg = *(l.wg); layer wo = *(l.wo); layer uf = *(l.uf); layer ui = *(l.ui); layer ug = *(l.ug); layer uo = *(l.uo); increment_layer(&wf, l.steps - 1); increment_layer(&wi, l.steps - 1); increment_layer(&wg, l.steps - 1); increment_layer(&wo, l.steps - 1); increment_layer(&uf, l.steps - 1); increment_layer(&ui, l.steps - 1); increment_layer(&ug, l.steps - 1); increment_layer(&uo, l.steps - 1); state.input += l.inputs*l.batch*(l.steps - 1); if (state.delta) state.delta += l.inputs*l.batch*(l.steps - 1); l.output_gpu += l.outputs*l.batch*(l.steps - 1); l.cell_gpu += l.outputs*l.batch*(l.steps - 1); l.delta_gpu += l.outputs*l.batch*(l.steps - 1); for (i = l.steps - 1; i >= 0; --i) { if (i != 0) copy_ongpu(l.outputs*l.batch, l.cell_gpu - l.outputs*l.batch, 1, l.prev_cell_gpu, 1); copy_ongpu(l.outputs*l.batch, l.cell_gpu, 1, l.c_gpu, 1); if (i != 0) copy_ongpu(l.outputs*l.batch, l.output_gpu - l.outputs*l.batch, 1, l.prev_state_gpu, 1); copy_ongpu(l.outputs*l.batch, l.output_gpu, 1, l.h_gpu, 1); l.dh_gpu = (i == 0) ? 0 : l.delta_gpu - l.outputs*l.batch; copy_ongpu(l.outputs*l.batch, wf.output_gpu, 1, l.f_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, uf.output_gpu, 1, l.f_gpu, 1); copy_ongpu(l.outputs*l.batch, wi.output_gpu, 1, l.i_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, ui.output_gpu, 1, l.i_gpu, 1); copy_ongpu(l.outputs*l.batch, wg.output_gpu, 1, l.g_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, ug.output_gpu, 1, l.g_gpu, 1); copy_ongpu(l.outputs*l.batch, wo.output_gpu, 1, l.o_gpu, 1); axpy_ongpu(l.outputs*l.batch, 1, uo.output_gpu, 1, l.o_gpu, 1); activate_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC); activate_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC); activate_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH); activate_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC); copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, l.temp3_gpu, 1); copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); copy_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp2_gpu, 1); mul_ongpu(l.outputs*l.batch, l.o_gpu, 1, l.temp2_gpu, 1); gradient_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH, l.temp2_gpu); axpy_ongpu(l.outputs*l.batch, 1, l.dc_gpu, 1, l.temp2_gpu, 1); copy_ongpu(l.outputs*l.batch, l.c_gpu, 1, l.temp_gpu, 1); activate_array_ongpu(l.temp_gpu, l.outputs*l.batch, TANH); mul_ongpu(l.outputs*l.batch, l.temp3_gpu, 1, l.temp_gpu, 1); gradient_array_ongpu(l.o_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wo.delta_gpu, 1); s.input = l.prev_state_gpu; s.delta = l.dh_gpu; backward_connected_layer_gpu(wo, s); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uo.delta_gpu, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer_gpu(uo, s); copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); mul_ongpu(l.outputs*l.batch, l.i_gpu, 1, l.temp_gpu, 1); gradient_array_ongpu(l.g_gpu, l.outputs*l.batch, TANH, l.temp_gpu); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wg.delta_gpu, 1); s.input = l.prev_state_gpu; s.delta = l.dh_gpu; backward_connected_layer_gpu(wg, s); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ug.delta_gpu, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer_gpu(ug, s); copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); mul_ongpu(l.outputs*l.batch, l.g_gpu, 1, l.temp_gpu, 1); gradient_array_ongpu(l.i_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wi.delta_gpu, 1); s.input = l.prev_state_gpu; s.delta = l.dh_gpu; backward_connected_layer_gpu(wi, s); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, ui.delta_gpu, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer_gpu(ui, s); copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); mul_ongpu(l.outputs*l.batch, l.prev_cell_gpu, 1, l.temp_gpu, 1); gradient_array_ongpu(l.f_gpu, l.outputs*l.batch, LOGISTIC, l.temp_gpu); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, wf.delta_gpu, 1); s.input = l.prev_state_gpu; s.delta = l.dh_gpu; backward_connected_layer_gpu(wf, s); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, uf.delta_gpu, 1); s.input = state.input; s.delta = state.delta; backward_connected_layer_gpu(uf, s); copy_ongpu(l.outputs*l.batch, l.temp2_gpu, 1, l.temp_gpu, 1); mul_ongpu(l.outputs*l.batch, l.f_gpu, 1, l.temp_gpu, 1); copy_ongpu(l.outputs*l.batch, l.temp_gpu, 1, l.dc_gpu, 1); state.input -= l.inputs*l.batch; if (state.delta) state.delta -= l.inputs*l.batch; l.output_gpu -= l.outputs*l.batch; l.cell_gpu -= l.outputs*l.batch; l.delta_gpu -= l.outputs*l.batch; increment_layer(&wf, -1); increment_layer(&wi, -1); increment_layer(&wg, -1); increment_layer(&wo, -1); increment_layer(&uf, -1); increment_layer(&ui, -1); increment_layer(&ug, -1); increment_layer(&uo, -1); } } #endif