#include "detection_layer.h" #include "activations.h" #include "softmax_layer.h" #include "blas.h" #include "box.h" #include "dark_cuda.h" #include "utils.h" #include #include #include #include detection_layer make_detection_layer(int batch, int inputs, int n, int side, int classes, int coords, int rescore) { detection_layer l = { (LAYER_TYPE)0 }; l.type = DETECTION; l.n = n; l.batch = batch; l.inputs = inputs; l.classes = classes; l.coords = coords; l.rescore = rescore; l.side = side; l.w = side; l.h = side; assert(side*side*((1 + l.coords)*l.n + l.classes) == inputs); l.cost = (float*)xcalloc(1, sizeof(float)); l.outputs = l.inputs; l.truths = l.side*l.side*(1+l.coords+l.classes); l.output = (float*)xcalloc(batch * l.outputs, sizeof(float)); l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float)); l.forward = forward_detection_layer; l.backward = backward_detection_layer; #ifdef GPU l.forward_gpu = forward_detection_layer_gpu; l.backward_gpu = backward_detection_layer_gpu; l.output_gpu = cuda_make_array(l.output, batch*l.outputs); l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); #endif fprintf(stderr, "Detection Layer\n"); srand(time(0)); return l; } void forward_detection_layer(const detection_layer l, network_state state) { int locations = l.side*l.side; int i,j; memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float)); //if(l.reorg) reorg(l.output, l.w*l.h, size*l.n, l.batch, 1); int b; if (l.softmax){ for(b = 0; b < l.batch; ++b){ int index = b*l.inputs; for (i = 0; i < locations; ++i) { int offset = i*l.classes; softmax(l.output + index + offset, l.classes, 1, l.output + index + offset, 1); } } } if(state.train){ float avg_iou = 0; float avg_cat = 0; float avg_allcat = 0; float avg_obj = 0; float avg_anyobj = 0; int count = 0; *(l.cost) = 0; int size = l.inputs * l.batch; memset(l.delta, 0, size * sizeof(float)); for (b = 0; b < l.batch; ++b){ int index = b*l.inputs; for (i = 0; i < locations; ++i) { int truth_index = (b*locations + i)*(1+l.coords+l.classes); int is_obj = state.truth[truth_index]; for (j = 0; j < l.n; ++j) { int p_index = index + locations*l.classes + i*l.n + j; l.delta[p_index] = l.noobject_scale*(0 - l.output[p_index]); *(l.cost) += l.noobject_scale*pow(l.output[p_index], 2); avg_anyobj += l.output[p_index]; } int best_index = -1; float best_iou = 0; float best_rmse = 20; if (!is_obj){ continue; } int class_index = index + i*l.classes; for(j = 0; j < l.classes; ++j) { l.delta[class_index+j] = l.class_scale * (state.truth[truth_index+1+j] - l.output[class_index+j]); *(l.cost) += l.class_scale * pow(state.truth[truth_index+1+j] - l.output[class_index+j], 2); if(state.truth[truth_index + 1 + j]) avg_cat += l.output[class_index+j]; avg_allcat += l.output[class_index+j]; } box truth = float_to_box(state.truth + truth_index + 1 + l.classes); truth.x /= l.side; truth.y /= l.side; for(j = 0; j < l.n; ++j){ int box_index = index + locations*(l.classes + l.n) + (i*l.n + j) * l.coords; box out = float_to_box(l.output + box_index); out.x /= l.side; out.y /= l.side; if (l.sqrt){ out.w = out.w*out.w; out.h = out.h*out.h; } float iou = box_iou(out, truth); //iou = 0; float rmse = box_rmse(out, truth); if(best_iou > 0 || iou > 0){ if(iou > best_iou){ best_iou = iou; best_index = j; } }else{ if(rmse < best_rmse){ best_rmse = rmse; best_index = j; } } } if(l.forced){ if(truth.w*truth.h < .1){ best_index = 1; }else{ best_index = 0; } } if(l.random && *(state.net.seen) < 64000){ best_index = rand()%l.n; } int box_index = index + locations*(l.classes + l.n) + (i*l.n + best_index) * l.coords; int tbox_index = truth_index + 1 + l.classes; box out = float_to_box(l.output + box_index); out.x /= l.side; out.y /= l.side; if (l.sqrt) { out.w = out.w*out.w; out.h = out.h*out.h; } float iou = box_iou(out, truth); //printf("%d,", best_index); int p_index = index + locations*l.classes + i*l.n + best_index; *(l.cost) -= l.noobject_scale * pow(l.output[p_index], 2); *(l.cost) += l.object_scale * pow(1-l.output[p_index], 2); avg_obj += l.output[p_index]; l.delta[p_index] = l.object_scale * (1.-l.output[p_index]); if(l.rescore){ l.delta[p_index] = l.object_scale * (iou - l.output[p_index]); } l.delta[box_index+0] = l.coord_scale*(state.truth[tbox_index + 0] - l.output[box_index + 0]); l.delta[box_index+1] = l.coord_scale*(state.truth[tbox_index + 1] - l.output[box_index + 1]); l.delta[box_index+2] = l.coord_scale*(state.truth[tbox_index + 2] - l.output[box_index + 2]); l.delta[box_index+3] = l.coord_scale*(state.truth[tbox_index + 3] - l.output[box_index + 3]); if(l.sqrt){ l.delta[box_index+2] = l.coord_scale*(sqrt(state.truth[tbox_index + 2]) - l.output[box_index + 2]); l.delta[box_index+3] = l.coord_scale*(sqrt(state.truth[tbox_index + 3]) - l.output[box_index + 3]); } *(l.cost) += pow(1-iou, 2); avg_iou += iou; ++count; } } if(0){ float* costs = (float*)xcalloc(l.batch * locations * l.n, sizeof(float)); for (b = 0; b < l.batch; ++b) { int index = b*l.inputs; for (i = 0; i < locations; ++i) { for (j = 0; j < l.n; ++j) { int p_index = index + locations*l.classes + i*l.n + j; costs[b*locations*l.n + i*l.n + j] = l.delta[p_index]*l.delta[p_index]; } } } int indexes[100]; top_k(costs, l.batch*locations*l.n, 100, indexes); float cutoff = costs[indexes[99]]; for (b = 0; b < l.batch; ++b) { int index = b*l.inputs; for (i = 0; i < locations; ++i) { for (j = 0; j < l.n; ++j) { int p_index = index + locations*l.classes + i*l.n + j; if (l.delta[p_index]*l.delta[p_index] < cutoff) l.delta[p_index] = 0; } } } free(costs); } *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2); printf("Detection Avg IOU: %f, Pos Cat: %f, All Cat: %f, Pos Obj: %f, Any Obj: %f, count: %d\n", avg_iou/count, avg_cat/count, avg_allcat/(count*l.classes), avg_obj/count, avg_anyobj/(l.batch*locations*l.n), count); //if(l.reorg) reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0); } } void backward_detection_layer(const detection_layer l, network_state state) { axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); } void get_detection_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) { int i,j,n; float *predictions = l.output; //int per_cell = 5*num+classes; for (i = 0; i < l.side*l.side; ++i){ int row = i / l.side; int col = i % l.side; for(n = 0; n < l.n; ++n){ int index = i*l.n + n; int p_index = l.side*l.side*l.classes + i*l.n + n; float scale = predictions[p_index]; int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n)*4; boxes[index].x = (predictions[box_index + 0] + col) / l.side * w; boxes[index].y = (predictions[box_index + 1] + row) / l.side * h; boxes[index].w = pow(predictions[box_index + 2], (l.sqrt?2:1)) * w; boxes[index].h = pow(predictions[box_index + 3], (l.sqrt?2:1)) * h; for(j = 0; j < l.classes; ++j){ int class_index = i*l.classes; float prob = scale*predictions[class_index+j]; probs[index][j] = (prob > thresh) ? prob : 0; } if(only_objectness){ probs[index][0] = scale; } } } } #ifdef GPU void forward_detection_layer_gpu(const detection_layer l, network_state state) { if(!state.train){ copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1); return; } float* in_cpu = (float*)xcalloc(l.batch * l.inputs, sizeof(float)); float *truth_cpu = 0; if(state.truth){ int num_truth = l.batch*l.side*l.side*(1+l.coords+l.classes); truth_cpu = (float*)xcalloc(num_truth, sizeof(float)); cuda_pull_array(state.truth, truth_cpu, num_truth); } cuda_pull_array(state.input, in_cpu, l.batch*l.inputs); network_state cpu_state = state; cpu_state.train = state.train; cpu_state.truth = truth_cpu; cpu_state.input = in_cpu; forward_detection_layer(l, cpu_state); cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs); cuda_push_array(l.delta_gpu, l.delta, l.batch*l.inputs); free(cpu_state.input); if(cpu_state.truth) free(cpu_state.truth); } void backward_detection_layer_gpu(detection_layer l, network_state state) { axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1); //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1); } #endif void get_detection_detections(layer l, int w, int h, float thresh, detection *dets) { int i, j, n; float *predictions = l.output; //int per_cell = 5*num+classes; for (i = 0; i < l.side*l.side; ++i) { int row = i / l.side; int col = i % l.side; for (n = 0; n < l.n; ++n) { int index = i*l.n + n; int p_index = l.side*l.side*l.classes + i*l.n + n; float scale = predictions[p_index]; int box_index = l.side*l.side*(l.classes + l.n) + (i*l.n + n) * 4; box b; b.x = (predictions[box_index + 0] + col) / l.side * w; b.y = (predictions[box_index + 1] + row) / l.side * h; b.w = pow(predictions[box_index + 2], (l.sqrt ? 2 : 1)) * w; b.h = pow(predictions[box_index + 3], (l.sqrt ? 2 : 1)) * h; dets[index].bbox = b; dets[index].objectness = scale; for (j = 0; j < l.classes; ++j) { int class_index = i*l.classes; float prob = scale*predictions[class_index + j]; dets[index].prob[j] = (prob > thresh) ? prob : 0; } } } }