#ifndef CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_ #define CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_ #include "caffe2/core/context.h" #include "caffe2/core/logging.h" #include "caffe2/core/operator.h" #include "caffe2/utils/math.h" namespace caffe2 { template class MaxReduceDimsOp final : public Operator { public: template explicit MaxReduceDimsOp(Args&&... args) : Operator(std::forward(args)...), num_reduce_dims_( this->template GetSingleArgument("num_reduce_dim", 1)) {} USE_OPERATOR_CONTEXT_FUNCTIONS; bool RunOnDevice() { auto& X = Input(0); CAFFE_ENFORCE( num_reduce_dims_ >= 0 && num_reduce_dims_ <= X.dim(), "For N-dim input tensor, support num_reduce_dims in range [0, N]."); const int rows = FIRSTDIMS ? X.size_to_dim(num_reduce_dims_) : X.size_to_dim(X.dim() - num_reduce_dims_); const int cols = FIRSTDIMS ? X.size_from_dim(num_reduce_dims_) : X.size_from_dim(X.dim() - num_reduce_dims_); vector output_shape; int start_index = FIRSTDIMS ? num_reduce_dims_ : 0; int end_index = FIRSTDIMS ? X.dim() : X.dim() - num_reduce_dims_; for (int i = start_index; i < end_index; ++i) { output_shape.push_back(X.sizes()[i]); } auto* Y = Output(0, output_shape, at::dtype()); float* out_data = Y->template mutable_data(); if (cols == 0 || rows == 0) { math::Set(Y->numel(), static_cast(0), out_data, &context_); return true; } const int32_t* lengths_data = nullptr; if (InputSize() > 1) { const auto& lengths = Input(1); lengths_data = lengths.template data(); CAFFE_ENFORCE( num_reduce_dims_ == 1, "Given lengths input, the number of reduce dimensions should be one."); const int batch_size = FIRSTDIMS ? cols : rows; CAFFE_ENFORCE( lengths.numel() == batch_size, "The size of lengths vector doesn't match the batch size."); } const float* data = X.template data(); Compute(rows, cols, data, lengths_data, out_data); return true; } protected: void Compute( int rows, int cols, const float* data, const int32_t* lengths_data, float* out_data); int num_reduce_dims_; }; template class MaxReduceDimsGradientOp final : public Operator { public: template explicit MaxReduceDimsGradientOp(Args&&... args) : Operator(std::forward(args)...), num_reduce_dims_( this->template GetSingleArgument("num_reduce_dim", 1)) {} USE_OPERATOR_CONTEXT_FUNCTIONS; bool RunOnDevice() override { auto& dY = Input(0); auto& X = Input(1); auto& Y = Input(2); auto* dX = Output(0, X.sizes(), at::dtype()); const int rows = FIRSTDIMS ? X.size_to_dim(num_reduce_dims_) : X.size_to_dim(X.dim() - num_reduce_dims_); const int cols = FIRSTDIMS ? X.size_from_dim(num_reduce_dims_) : X.size_from_dim(X.dim() - num_reduce_dims_); const float* dYdata = dY.template data(); const float* Xdata = X.template data(); const float* Ydata = Y.template data(); const int32_t* lengths_data = nullptr; if (InputSize() > 3) { const auto& lengths = Input(3); lengths_data = lengths.template data(); CAFFE_ENFORCE( num_reduce_dims_ == 1, "Given lengths input, the number of reduce dimensions should be one."); const int batch_size = FIRSTDIMS ? cols : rows; CAFFE_ENFORCE( lengths.numel() == batch_size, "The size of lengths vector doesn't match the batch size."); } float* dXdata = dX->template mutable_data(); Compute(rows, cols, dYdata, Xdata, Ydata, lengths_data, dXdata); return true; } protected: void Compute( int rows, int cols, const float* dYdata, const float* Xdata, const float* Ydata, const int32_t* lengths_data, float* dXdata); int num_reduce_dims_; }; } // namespace caffe2 #endif // CAFFE2_OPERATORS_REDUCE_FRONT_BACK_MAX_OPS_H_