#ifndef CAFFE2_OPERATORS_NUMPY_TILE_OP_H_ #define CAFFE2_OPERATORS_NUMPY_TILE_OP_H_ #include "caffe2/core/common_omp.h" #include "caffe2/core/context.h" #include "caffe2/core/logging.h" #include "caffe2/core/operator.h" #include "caffe2/utils/math.h" namespace caffe2 { // Copy a Blob n times along a specified axis. template class NumpyTileOp : public Operator { public: USE_OPERATOR_CONTEXT_FUNCTIONS; template explicit NumpyTileOp(Args&&... args) : Operator(std::forward(args)...) {} ~NumpyTileOp() {} bool RunOnDevice() override { const auto& input = Input(0); const auto& repeats = Input(1); // Check that the `repeats` tensor has the correct rank, has a number of // elements equal to the number of axes of `input`. CAFFE_ENFORCE_EQ(repeats.dim(), 1, "repeats input must be a 1-d tensor"); CAFFE_ENFORCE_EQ( repeats.numel(), input.dim(), "repeats input have the same" " number of elements as `inputs` has dimensions."); const int64_t *repeats_data = repeats.template data(); for (size_t i = 0; i < repeats.numel(); ++i) { CAFFE_ENFORCE_GE(repeats_data[i], 0); } auto* output = Output(0); // Alternate inputs and outputs between two buffers. Repeatedly apply the // Tile kernel along each axis. Then copy out the resulting data into the // output tensor. Tensor *src = &buffer, *dst = output; src->CopyFrom(input); vector output_dims(input.sizes().vec()); for (size_t i = 0; i < repeats.numel(); ++i) { if (repeats_data[i] == 1) { continue; } // size up to (and not including) axis const auto outer_dim = src->size_to_dim(i); // size from axis up const auto inner_dim = src->size_from_dim(i); dst->Resize(outer_dim, inner_dim * repeats_data[i]); /** * How this works: * Imagine a 2D tensor (matrix) of size 3x10, tiled 2 times. * - Tiling along axis 0 (row) means copying the entire 3x10 Matrix 2 * times. outer_dim = 0, inner_dim = 30. * - Tiling along axis 1 (column) means copying each row 2 times, then * proceed to the next row, until the end. outer_dim = 3, inner_dim = 10. */ const char* src_data = static_cast(src->raw_data()); char* dst_data = static_cast(dst->raw_mutable_data(src->dtype())); DoTile( src->dtype(), src->itemsize(), outer_dim, inner_dim, repeats_data[i], src_data, dst_data); output_dims[i] *= repeats_data[i]; dst->Reshape(output_dims); std::swap(src, dst); } // NB: because we have the swap at the end of the above loop, our real // result tensor is going to live in *src when we reach this line // whether we entered the loop or not :) if (output != src) output->CopyFrom(*src); return true; } private: void DoTile( const TypeMeta& meta, int item_size, int outer_dim, int inner_dim, int64_t num_tiles, const char* input_data, char* output_data) { for (auto i = 0; i < outer_dim; ++i) { for (auto t = 0; t < num_tiles; ++t) { context_.CopyItemsSameDevice(meta, inner_dim, input_data, output_data); output_data += inner_dim * item_size; } input_data += inner_dim * item_size; } } Tensor buffer{Context::GetDeviceType()}; }; } // namespace caffe2 #endif // CAFFE2_OPERATORS_NUMPY_TILE_OP_H_